References and Notes
For example, see:
<A NAME="RU06510ST-1A">1a</A>
Thompson CF.
Jamison TF.
Jacobsen EN.
J. Am. Chem. Soc.
2001,
123:
9974
<A NAME="RU06510ST-1B">1b</A>
Marco-Contelles J.
de Opazo E.
J.
Org. Chem.
2002,
67:
3705
<A NAME="RU06510ST-1C">1c</A>
Aoki S.
Matsui K.
Wei H.
Murakami N.
Kobayashi M.
Tetrahedron
2002,
58:
5417
For example, see:
<A NAME="RU06510ST-2A">2a</A>
Arcadi A.
Marinelli F.
Rossi E.
Tetrahedron
1999,
55:
13233
<A NAME="RU06510ST-2B">2b</A>
Adlington RM.
Baldwin JE.
Pritchard GJ.
Spencer KC.
Tetrahedron Lett.
2000,
41:
575
<A NAME="RU06510ST-2C">2c</A>
Wang X.-J.
Tan J.
Zhang L.
Org. Lett.
2000,
2:
3107
<A NAME="RU06510ST-2D">2d</A>
Jeevanandam A.
Narkunan K.
Ling Y.-C.
J.
Org. Chem.
2001,
66:
6014
<A NAME="RU06510ST-2E">2e</A>
Grotjahn DB.
Van S.
Combs D.
Lev DA.
Schneider C.
Rideout M.
Meyer C.
Hernandez G.
Mejorado L.
J.
Org. Chem.
2002,
67:
9200
For example, see:
<A NAME="RU06510ST-3A">3a</A>
Dodero VI.
Koll LC.
Faraoni MB.
Mitchell TN.
Podestá JC.
J. Org.
Chem.
2003,
68:
10087
<A NAME="RU06510ST-3B">3b</A>
Trost BM.
Ball ZT.
J.
Am. Chem. Soc.
2004,
126:
13942
<A NAME="RU06510ST-4A">4a</A>
Tohda Y.
Sonogashira K.
Hagihara N.
Synthesis
1977,
777
<A NAME="RU06510ST-4B">4b</A>
Chowdhury C.
Kundu NG.
Tetrahedron Lett.
1996,
37:
7323
<A NAME="RU06510ST-4C">4c</A>
Chowdhury C.
Kundu NG.
Tetrahedron
1999,
55:
7011
<A NAME="RU06510ST-4D">4d</A>
Wang J.-X.
Wei B.
Huang D.
Hu Y.
Bai L.
Synth. Commun.
2001,
31:
3337
<A NAME="RU06510ST-4E">4e</A>
Wang J.-X.
Wei B.
Hu Y.
Liu Z.
Fu Y.
Synth. Commun.
2001,
31:
3527
<A NAME="RU06510ST-4F">4f</A>
Karpov AS.
Müller TJJ.
Org.
Lett.
2003,
5:
3451
<A NAME="RU06510ST-4G">4g</A>
Guo M.
Li D.
Zhang Z.
J.
Org. Chem.
2003,
68:
10172
<A NAME="RU06510ST-4H">4h</A>
Yin J.
Wang X.
Liang Y.
Wu X.
Chen B.
Ma Y.
Synthesis
2004,
331
<A NAME="RU06510ST-4I">4i</A>
Alonso DA.
Nájera C.
Pacheco MC.
J. Org. Chem.
2004,
69:
1615
<A NAME="RU06510ST-4J">4j</A>
Chen L.
Li C.-J.
Org. Lett.
2004,
6:
3151
<A NAME="RU06510ST-4K">4k</A>
Cox RJ.
Ritson DJ.
Dane TA.
Berge J.
Charmant JPH.
Kantacha A.
Chem. Commun.
2005,
1037
<A NAME="RU06510ST-4L">4l</A>
Palimkar SS.
Kumar PH.
Jogdand NR.
Daniel T.
Lahoti RJ.
Srinivasan KV.
Tetrahedron
Lett.
2006,
47:
5527
<A NAME="RU06510ST-4M">4m</A>
Likhar PR.
Subhas MS.
Roy M.
Roy S.
Kantam ML.
Helv. Chim. Acta
2008,
91:
259
<A NAME="RU06510ST-4N">4n</A>
Lv Q.-R.
Meng X.
Wu J.-S.
Gao Y.-J.
Li C.-L.
Zhu Q.-Q.
Chen B.-H.
Catal. Commun.
2008,
9:
2127
<A NAME="RU06510ST-4O">4o</A>
Chen J.-Y.
Lin T.-C.
Chen S.-C.
Chen A.-J.
Mou C.-Y.
Tsai F.-Y.
Tetrahedron
2009,
65:
10134
<A NAME="RU06510ST-4P">4p</A>
Bakherad M.
Keivanloo A.
Bahramian B.
Rajaie M.
Tetrahedron Lett.
2010,
51:
33
<A NAME="RU06510ST-5">5</A> Alkynyllithium:
Stefani HA.
Cella R.
Dörr FA.
de Pereira CMP.
Gomes FP.
Zeni G.
Tetrahedron Lett.
2005,
46:
2001
Alkynylborane:
<A NAME="RU06510ST-6A">6a</A>
Oh CH.
Reddy VR.
Tetrahedron Lett.
2004,
45:
8545
<A NAME="RU06510ST-6B">6b</A>
Nishihara Y.
Saito D.
Inoue E.
Okada Y.
Miyazaki M.
Inoue Y.
Takagi K.
Tetrahedron Lett.
2010,
51:
306
Alkynylaluminium:
<A NAME="RU06510ST-7A">7a</A>
Wakamatsu K.
Okuda Y.
Oshima K.
Nozaki H.
Bull. Chem. Soc. Jpn.
1985,
58:
2425
<A NAME="RU06510ST-7B">7b</A>
Wang B.
Bonin M.
Micouin L.
J.
Org. Chem.
2005,
70:
6126
Alkynylsilane:
<A NAME="RU06510ST-8A">8a</A>
Ito H.
Arimoto K.
Sensui H.
Hosomi A.
Tetrahedron Lett.
1997,
38:
3977
<A NAME="RU06510ST-8B">8b</A>
Yadav JS.
Reddy BVS.
Reddy MS.
Synlett
2003,
1722
<A NAME="RU06510ST-8C">8c</A>
Yadav JS.
Reddy BVS.
Reddy MS.
Parimala G.
Synthesis
2003,
2390
<A NAME="RU06510ST-9">9</A> Alkynylzinc:
Negishi E.
Bagheri V.
Chatterjee S.
Luo F.-T.
Miller JA.
Stoll AT.
Tetrahedron Lett.
1983,
24:
5181
<A NAME="RU06510ST-10">10</A> Alkynylcopper:
Qian H.
Shao L.-X.
Huang X.
Synlett
2001,
1571
<A NAME="RU06510ST-11">11</A> Alkynylgallate:
Han Y.
Fang L.
Tao W.-T.
Huang Y.-Z.
Tetrahedron Lett.
1995,
36:
1287
Alkynylindium:
<A NAME="RU06510ST-12A">12a</A>
Pérez I.
Sestelo JP.
Sarandeses LA.
J. Am. Chem. Soc.
2001,
123:
4155
<A NAME="RU06510ST-12B">12b</A>
Augé J.
Lubin-Germain N.
Seghrouchni L.
Tetrahedron Lett.
2003,
44:
819
Alkynyltin:
<A NAME="RU06510ST-13A">13a</A>
Logue MW.
Teng K.
J. Org. Chem.
1982,
47:
2549
<A NAME="RU06510ST-13B">13b</A>
Kuhn H.
Neumann WP.
Synlett
1994,
123
<A NAME="RU06510ST-13C">13c</A>
Lerebours B.
Camacho-Soto A.
Wolf C.
J.
Org. Chem.
2005,
70:
8601
Alkynylstibine:
<A NAME="RU06510ST-14A">14a</A>
Kakusawa N.
Yamaguchi K.
Kurita J.
Tsuchiya T.
Tetrahedron Lett.
2000,
41:
4143
<A NAME="RU06510ST-14B">14b</A>
Kakusawa N.
Tobiyasu Y.
Yasuike S.
Yamaguchi K.
Seki H.
Kurita J.
J. Organomet. Chem.
2006,
691:
2953
<A NAME="RU06510ST-15">15</A> Alkynylthallium:
Marko IE.
Southern JM.
J.
Org. Chem.
1990,
55:
3368
<A NAME="RU06510ST-16A">16a</A>
Kobayashi T.
Tanaka M.
J.
Chem. Soc., Chem. Commun.
1981,
333
<A NAME="RU06510ST-16B">16b</A>
Delaude L.
Masdeu AM.
Alper H.
Synthesis
1994,
1149
<A NAME="RU06510ST-16C">16c</A>
Arcadi A.
Cacchi S.
Marinelli F.
Pace P.
Sanzi G.
Synlett
1995,
823
<A NAME="RU06510ST-16D">16d</A>
Kang S.-K.
Lim K.-H.
Ho P.-S.
Kim W.-Y.
Synthesis
1997,
874
<A NAME="RU06510ST-16E">16e</A>
Mohamed Ahmed MS.
Mori A.
Org.
Lett.
2003,
5:
3057
<A NAME="RU06510ST-16F">16f</A>
Liang B.
Huang M.
You Z.
Xiong Z.
Lu K.
Fathi R.
Chen J.
Yang Z.
J.
Org. Chem.
2005,
70:
6097
<A NAME="RU06510ST-16G">16g</A>
Sans V.
Trzeciak AM.
Luis S.
Ziókowski JJ.
Catal.
Lett.
2006,
109:
37
<A NAME="RU06510ST-16H">16h</A>
Rahman
MT.
Fukuyama T.
Kamata N.
Sato M.
Ryu I.
Chem. Commun.
2006,
2236
<A NAME="RU06510ST-16I">16i</A>
Ma W.
Li X.
Yang J.
Liu Z.
Chen B.
Pan X.
Synthesis
2006,
2489
<A NAME="RU06510ST-16J">16j</A>
Liu J.
Chen J.
Xia C.
J.
Catal.
2008,
253:
50
<A NAME="RU06510ST-16K">16k</A>
Tambade PJ.
Patil
YP.
Nandurkar NS.
Bhanage BM.
Synlett
2008,
886
<A NAME="RU06510ST-16L">16l</A>
Liu J.
Peng X.
Sun W.
Zhao Y.
Xia C.
Org. Lett.
2008,
10:
3933
<A NAME="RU06510ST-16M">16m</A>
Fusano A.
Fukuyama T.
Nishitani S.
Inouye T.
Ryu I.
Org.
Lett.
2010,
12:
2410
<A NAME="RU06510ST-17">17</A>
Vong BG.
Kim SH.
Abraham S.
Theodorakis EA.
Angew. Chem.
Int. Ed.
2004,
43:
3947
<A NAME="RU06510ST-18">18</A>
Inhülsen I.
Margaretha P.
Org. Lett.
2010,
12:
728
<A NAME="RU06510ST-19A">19a</A>
Shergina SI.
Sokolov IE.
Zanina AS.
Mendeleev Commun.
1994,
4:
207
<A NAME="RU06510ST-19B">19b</A>
Van den Hoven BG.
El Ali B.
Alper H.
J. Org. Chem.
2000,
65:
4131
<A NAME="RU06510ST-20A">20a</A>
Hoshi M.
Nakayabu H.
Shirakawa K.
Synthesis
2005,
1991
<A NAME="RU06510ST-20B">20b</A>
Hoshi M.
Suzuki S.
Saitoh S.
Okimoto M.
Shirakawa K.
Tetrahedron
Lett.
2007,
48:
119
<A NAME="RU06510ST-20C">20c</A>
Hoshi M.
Iizawa T.
Okimoto M.
Shirakawa K.
Synthesis
2008,
3591
<A NAME="RU06510ST-21A">21a</A>
Hoshi M.
Shirakawa K.
Synlett
2002,
1101
<A NAME="RU06510ST-21B">21b</A>
Hoshi M.
Kawamura N.
Shirakawa K.
Synthesis
2006,
1961
<A NAME="RU06510ST-22">22</A>
Compound 2a was
formed in about 75% GC yield based on Me3SiC≡CBr
employed, see ref. 21.
<A NAME="RU06510ST-23">23</A>
Considering that acid chloride would
be consumed by reaction with residual both NaOMe and MeOH, an excess amount
of benzoyl chloride was employed in this one-pot reaction. Indeed,
using a stoichiometric amount of benzoyl chloride (0.5 mmol), a
decrease in the yield of product 3aa was
observed.
<A NAME="RU06510ST-24">24</A>
Among amine bases including i-Pr2NEt, Et3N
was the base of choice for the cross-coupling reaction with benzoyl chloride.
<A NAME="RU06510ST-25">25</A>
To a solution of BH3 (1
mmol) in THF (3 mL) was added 2-methylbut-2-ene (0.14 g, 2 mmol)
dropwise at -15 ˚C under argon, and the mixture
was stirred for 2 h at 0 ˚C to form a solution of disiamylborane
in THF. To this solution was added oct-1-yne (0.11 g, 1 mmol) dropwise
at -15 ˚C, and the mixture was stirred for 2 h
at 0 ˚C. A solution of (E)-oct-1-enyldisiamylborane
(1a, 1 mmol) in THF, thus prepared, was
cooled to -15 ˚C, and Cu(acac)2 (0.013
g, 0.05 mmol) was added to the solution under a flow of argon,
followed by dropwise addition of (trimethylsilyl)ethynyl bromide (0.119
g, 0.67 mmol) and NaOMe (1 M, 0.75 mL, 0.75 mmol). The resulting
mixture was allowed to warm gradually to r.t. and stirred overnight.
Methanol resulting from 1 M NaOMe was removed under reduced pressure, accompanied
by the solvent. After addition of THF (3 mL) to the residue under
argon, the resulting mixture including (E)-dec-3-en-1-yne
(2a) was cooled to 0 ˚C, and Pd(OAc)2 (0.002
g, 0.01 mmol) and Ph3P (0.005 g, 0.02 mmol) were added
successively under a flow of argon, followed by dropwise addition
of benzoyl chloride (0.141 g, 1 mmol) and Et3N (0.101
g, 1 mmol). The resultant mixture was stirred for 2 h at r.t. and
then oxidized by the successive addition of 3 M NaOH (1 mL) and
30% H2O2 (0.5 mL) at 0 ˚C.
After being stirred for 1 h at this temperature, the mixture was extracted
three times with Et2O. The combined extracts were washed
with brine, dried over Na2SO4, and concentrated. The
residue was purified by flash chromatography on silica gel, with
hexane-CH2Cl2 (1:1) as eluent, to
give (E)-1-phenylundec-4-en-2-yn-1-one
(3aa, 0.103 g, 86%).
Compound 3aa: ¹H NMR (500 MHz,
CDCl3): δ = 0.89 (t, J = 7.1
Hz, 3 H), 1.25-1.35 (m, 6 H), 1.42-1.49 (m, 2
H), 2.21-2.26 (m, 2 H), 5.74 (dt, J = 16.1,
1.5 Hz, 1 H), 6.63 (dt, J = 16.1,
7.1 Hz, 1 H), 7.46-7.50 (m, 2 H), 7.58-7.62 (m,
1 H), 8.13-8.16 (m, 2 H). ¹³C
NMR (125 MHz, CDCl3): δ = 14.06 (CH3),
22.56 (CH2), 28.22 (CH2), 28.78 (CH2),
31.59 (CH2), 33.64 (CH2), 86.05 (≡C),
92.85 (≡C), 107.65 (=CH), 128.50 (2 × =CH),
129.50 (2 × =CH), 133.90 (=CH),
136.92 (=C), 153.10 (=CH), 178.11 (C=O).
IR (neat): 2954, 2927, 2856, 2183, 1641, 1620, 1596, 1579, 1448,
1313, 1265, 1174, 956, 937, 700 cm-¹.
HRMS (EI): m/z calcd for C17H20O:
240.1514; found: 240.1508.
<A NAME="RU06510ST-26">26</A>
Compounds 2b-d were formed in 72-74% GC
yields based on Me3SiC≡CBr employed; unpublished
results.