Synlett 2010(16): 2513-2517  
DOI: 10.1055/s-0030-1258551
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

N-Heterocyclic Carbene Catalyzed Vinylogous Aldol Reaction of 2-(Trimethylsilyloxy)furan and Aldehydes

Guang-Fen Du, Lin He*, Cheng-Zhi Gu, Bin Dai
School of Chemistry and Chemical Engineering, Shi He Zi University, Xin Jiang 832000, P. R. of China
Fax: +86(993)2057270; e-Mail: helin@shzu.edu.cn;
Further Information

Publication History

Received 18 June 2010
Publication Date:
03 September 2010 (online)

Abstract

A N-Heterocyclic carbenes (NHC) catalyzed vinylogous aldol reaction between 2-(trimethylsilyloxy)furan and aldehydes has been developed, providing γ-substituted butenolides in high yields with good diastereoselectivities. Furthermore, the catalyst loading can be reduced to 1 mol%.

    References and Notes

  • 1a Igau A. Grutzmacher H. Baceiredo A. Bertrand G.
    J. Am. Chem. Soc.  1988,  110:  6463 
  • 1b Igau A. Baceiredo A. Trinquier G. Betrand G. Angew. Chem., Int. Ed. Engl.  1989,  28:  621 
  • 1c Arduengo AJ. Harlow RL. Kline M. J. Am. Chem. Soc.  1991,  113:  361 
  • For recent reviews, see:
  • 2a N-Heterocyclic Carbenes in Synthesis   Nolan SP. Wiley-VCH; Weinheim: 2006. 
  • 2b N-Heterocyclic Carbenes in Transition Metal Catalysis, In Topics in Organometallic Chemistry   Vol. 21:  Glorius F. Springer; Berlin/Heidelberg: 2007. 
  • 2c González SD. Morion N. Nolan SP. Chem. Rev.  2009,  109:  3612 
  • For reviews, see:
  • 3a Enders D. Balensiefer T. Acc. Chem. Res.  2004,  37:  534 
  • 3b Zeitler K. Angew. Chem. Int. Ed.  2005,  44:  7506 
  • 3c Enders D. Niemeier O. Henseler A. Chem. Rev.  2007,  107:  5606 
  • 3d Marion N. Díez-González S. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2988 
  • 3e Nair V. Vellalath S. Babu BP. Chem. Soc. Rev.  2008,  37:  2691 
  • 4a Ugai T. Tanaka S. Dokawa S. J. Pharm.  1943,  63:  269 
  • 4b Enders D. Kallfass U. Angew. Chem. Int. Ed.  2002,  41:  1743 
  • 4c Enders D. Han J. Tetrahedron: Asymmetry  2008,  19:  1367 
  • 4d Enders D. Niemeier O. Balensiefer T. Angew. Chem. Int. Ed.  2006,  45:  1463 
  • 4e Takikawa H. Hachisu Y. Bode JW. Suzuki K. Angew. Chem. Int. Ed.  2006,  45:  3492 
  • 5a Stetter H. Schreckenberg M. Angew. Chem., Int. Ed. Engl.  1973,  12:  81 
  • 5b Kerr MS. Rovis T. Synlett  2003,  1934 
  • 5c Kerr MS. Rovis T. J. Am. Chem. Soc.  2004,  126:  8876 
  • 5d Nakamura T. Hara O. Tamura T. Makino K. Hamada Y. Synlett  2005,  155 
  • 5e Mattson AE. Zuhl AM. Reynolds TE. Scheidt KA. J. Am. Chem. Soc.  2006,  128:  4932 
  • 5f Dirocco DA. Oberg KM. Dalton DM. Rovis T. J. Am. Chem. Soc.  2009,  131:  10872 
  • 6a Burstein C. Glorius F. Angew. Chem. Int. Ed.  2004,  43:  6205 
  • 6b Sohn SS. Rosen EL. Bode JW. J. Am. Chem. Soc.  2004,  126:  14370 
  • 6c Burstein C. Tschan S. Xie X. Glorius F. Synthesis  2006,  2418 
  • 6d Nair V. Vellalath S. Poonoth M. Suresh E. J. Am. Chem. Soc.  2006,  128:  8736 
  • 6e Chiang P.-C. Kaeobamrung J. Bode JW. J. Am. Chem. Soc.  2007,  129:  3520 
  • 6f David BC. Raup DEA. Scheidt KA. J. Am. Chem. Soc.  2010,  132:  5345 
  • 7a Bakhtiar C. Smith EH. J. Chem. Soc., Perkin Trans. 1  1994,  239 
  • 7b Nyce GW. Lamboy JA. Connor EF. Waymouth RM. Hedrick JL. Org. Lett.  2002,  4:  3587 
  • 7c Grasa GA. Kissling RM. Nolan SP. Org. Lett.  2002,  4:  3583 
  • 7d Grasa GA. Singh SM. Nolan SP. Synthesis  2004,  971 
  • 7e Kano T. Sasaki K. Maruoka K. Org. Lett.  2005,  7:  1347 
  • 7f Zeng T.-Q. Song G.-H. Li C.-J. Org. Biomol. Chem.  2010,  8:  901 
  • 8a Connor EF. Nyce GW. Myers M. Möck A. Hedrick JL. J. Am. Chem. Soc.  2002,  124:  914 
  • 8b Nyce GW. Glauser T. Connor EF. Möck A. Waymouth RM. Hedrick JL. J. Am. Chem. Soc.  2003,  125:  3046 
  • 8c Raynaud J. Ciolino A. Baceiredo A. Destarac M. Bonnette F. Kato T. Gnanou Y. Taton D. Angew. Chem. Int. Ed.  2008,  47:  5390 
  • 8d Raynaud J. Ottou WN. Gnanou Y. Taton D. Chem. Commun.  2009,  6249 
  • 9a Zhang YR. He L. Wu X. Shao PL. Ye S. Org. Lett.  2008,  10:  277 
  • 9b Duguet N. Campbell CD. Slawin AMZ. Smith AD. Org. Biomol. Chem.  2008,  6:  1108 
  • 9c He L. Lv H. Zhang Y.-R. Ye S. J. Org. Chem.  2008,  73:  8101 
  • 9d Zhang Y.-R. Lv H. Zhou D. Ye S. Chem. Eur. J.  2008,  14:  8473 
  • 9e Huang X.-L. He L. Shao P.-L. Ye S. Angew. Chem. Int. Ed.  2009,  48:  192 
  • 9f Wang X.-N. Shao P.-L. Lv H. Ye S. Org. Lett.  2009,  11:  4029 
  • 9g Lv H. You L. Ye S. Adv. Synth. Catal.  2009,  351:  2822 
  • For selected examples, see:
  • 10a Li G.-Q. Dai L.-X. You S.-L. Org. Lett.  2009,  11:  1623 
  • 10b Hirano K. Biju AT. Piel I. Glorius F. J. Am. Chem. Soc.  2009,  131:  14190 
  • 10c Riduan SN. Zhang Y. Ying JY. Angew. Chem. Int. Ed.  2009,  48:  3322 
  • 10d Kawanaka Y. Phillips EM. Scheidt KA. J. Am. Chem. Soc.  2009,  131:  18028 
  • 10e Raveendran AE. Paul RR. Suresh E. Nair V. Org. Biomol. Chem.  2010,  4:  901 
  • 10f Biju AT. Wurz NE. Glorius F. J. Am. Chem. Soc.  2010,  132:  5970 
  • 10g Vora HU. Rovis T. J. Am. Chem. Soc.  2010,  132:  2860 
  • 10h Sarkar S. Grimme S. Studer A. J. Am. Chem. Soc.  2010,  132:  1190 
  • 10i Gu L. Zhang Y. J. Am. Chem. Soc.  2010,  132:  914 
  • 11 Song J. Tan Z. Reeves JT. Gallou F. Yee NK. Senanayake CH. Org. Lett.  2005,  7:  2193 
  • 12a Song JJ. Gallou F. Reeves JT. Tan ZL. Yee NK. Senanayake CH. J. Org. Chem.  2006,  71:  1273 
  • 12b Suzuki Y. Bakar A. Muramatsu K. Sato M. Tetrahedron  2006,  62:  4227 
  • 12c Kano T. Sasaki K. Konishi T. Mii H. Maruoka K. Tetrahedron Lett.  2006,  47:  4615 
  • 12d Suzuki Y. Muramatsu K. Yamauchi K. Morie Y. Sato M. Tetrahedron  2006,  62:  302 
  • 12e Fukuda Y. Maeda Y. Ishii S. Kondo K. Aoyama T. Synthesis  2006,  589 
  • 12f Fukuda Y. Kondo K. Aoyama T. Synthesis  2006,  2649 
  • 12g Fukuda Y. Maeda Y. Kondo K. Aoyama T. Synthesis  2006,  1937 
  • 12h Fukuda Y. Maeda Y. Kondo K. Aoyama T. Chem. Pharm. Bull.  2006,  54:  397 
  • 13a Wu J. Sun X. Xia HG. Eur. J. Org. Chem.  2005,  4769 
  • 13b Wu J. Sun XY. Ye SQ. Sun W. Tetrahedron Lett.  2006,  47:  4813 
  • 13c Sun X. Ye S. Wu J. Eur. J. Org. Chem.  2006,  4787 
  • 13d Liu YK. Li R. Yue L. Li BJ. Chen YC. Wu Y. Ding LS. Org. Lett.  2006,  8:  1521 
  • 14 Song J. Tan Z. Reeves JT. Yee NK. Senanayake CH. Org. Lett.  2007,  9:  1013 
  • For reviews on butenolide-containing natural products, see:
  • 15a Rodriguez AD. Tetrahedron  1995,  51:  4571 
  • 15b Alali FW. Liu XX. McLaughlin JL. J. Nat. Prod.  1999,  62:  504 
  • 15c Hanson JR. Nat. Prod. Rep.  2002,  19:  381 
  • 16a Jefford CW. Jaggi D. Boukouvalas J. Tetrahedron Lett.  1987,  28:  4037 
  • 16b Brown DW. Campbell MM. Taylor AP. Zhang X. Tetrahedron Lett.  1987,  28:  985 
  • 16c Bauer T. Tetrahedron: Asymmetry  1996,  7:  981 
  • 16d Ferrié S. Reymond S. Capdevielle P. Cossy J. Synlett  2007,  2891 
  • 16e Sarma KD. Zhang J. Curran TT.
    J. Org. Chem.  2007,  72:  3311 
  • For reviews of vinylogous aldol reactions, see:
  • 17a Rassu G. Zanardi F. Battistini L. Casiraghi G. Synlett  1999,  1333 
  • 17b Casiraghi G. Zanardi F. Appendino G. Rassu G. Chem. Rev.  2000,  100:  1929 
  • 17c Denmark SE. Heemstra JR. Beutner GL. Angew. Chem. Int. Ed.  2005,  44:  4682 
  • 17d Kalesse M. Top. Curr. Chem.  2005,  244:  43 
  • For recent examples of vinylogous aldol reactions of 2-(trimethylsilyloxy)furan, see:
  • 17e Ollevier T. Bouchard JE. Desyroy V. J. Org. Chem.  2008,  73:  331 
  • 17f Yadav JS. Subba Reddy BV. Narasimhulu G. Satheesh G. Tetrahedron Lett.  2008,  49:  5683 
  • 17g Szlosek M. Figadère B. Angew. Chem. Int. Ed.  2009,  48:  1799 
  • 17h Frings M. Atodiresei I. Runsink J. Raabe G. Bolm C. Chem. Eur. J.  2009,  15:  1566 
  • 17i Raders SM. Verkade JG. J. Org. Chem.  2009,  74:  5417 
  • 17j Ube H. Shimada N. Terada M. Angew. Chem. Int. Ed.  2010,  49:  1858 
  • 17k Zhu N. Ma BC. Zhang Y. Wang W. Adv. Synth. Catal.  2010,  352:  1291 
  • 18 Rosa MD. Citro L. Soriente A. Tetrahedron Lett.  2006,  47:  8507 
  • 19 Arduengo AJ. Krafczyk R. Schmutzler R. Tetrahedron  1999,  55:  14523 
  • 21 For recent study of penta- and hexacoordinate silicon-NHC complexes, see: Ghadwal RS. Sen SS. Roesky HW. Tavcar G. Merkel S. Stalke D. Organometallics  2009,  28:  6347 
20

General Procedure for NHC-Catalyzed Vinylogous Aldol Reaction of 2-(Trimethylsilyloxy)furan with Aldehydes
To a solution of 2 (4.0 mg, 0.012 mmol) in anhyd THF (2.0 mL) was added KOt-Bu (1.1 mg, 0.01 mmol) under N2. After stirred for 30 min at r.t., the solution was then cooled to 0 ˚C and aldehyde (1.0 mmol) was added followed by 2-(trimethylsilyloxy)furan (1.3 mmol, 200 µL). The reaction mixture was then stirred at r.t. until full consumption of the starting aldehyde as indicated by TLC. The solution was then cooled to 0 ˚C and quenched with 10% aq HCl. The mixture was stirred for 30 min and neutralized by sat. aq NaHCO3 and then extracted with EtOAc. The combined organic phase was dried over anhyd Na2SO4, filtered, and concentrated. The ratio of anti/syn was determined by ¹H NMR analysis of the crude products, and the configurations were assigned by ¹H NMR comparison with literature data. The crude products were purified through silica gel chromatography (EtOAc-PE) to afford pure anti products or a mixture of anti/syn isomers.
Data for 8g Yield 83%; white solid; R f  = 0.14 (PE-EtOAc, 4:1); mp 134.5-135.5 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 7.61 (dd, J = 7.6, 1.2 Hz, 1 H), 7.20-7.45 (m, 4 H), 6.20 (dd, J = 5.6, 2.0 Hz, 1 H), 5.62 (t, J = 4.0 Hz, 1 H), 5.36-5.44 (m, 1 H), 3.36 (d, J = 4.4 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 172.3, 151.2, 134.5, 130.8, 128.6, 126.9, 126.4, 122.5, 83.6, 68.4. IR (KBr): ν = 3390, 1726, 1465, 1437, 1342, 1188, 1108, 1025, 918, 819, 744, 609 cm. ESI-HRMS: m/z calcd for C11H9ClO3Na: 247.0132; found: 247.0156.