Subscribe to RSS
DOI: 10.1055/s-0030-1258522
Rearrangement of Pyran Derivatives Obtained from Vinyl Malononitriles and Aldehydes via Vinylogous Aldol Reaction: A Novel Facile Method for the Synthesis of Dienamides
Publication History
Publication Date:
27 July 2010 (online)

Abstract
A novel one-pot approach to a variety dienamides from vinyl malononitriles and aldehydes via vinylogous aldol reaction was achieved by the electrolytic ring opening of the initially formed pyran derivatives under mild basic catalysis with good diastereoselectivity.
Key words
vinyl malononitrile - vinylogous aldol reaction - pyran rearrangement - dienamides
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1
McAlonan H.Murphy JP.Nieuwenhuyzen M.Reynolds K.Sarma PKS.Stevenson PJ.Thompson N. J. Chem. Soc., Perkin Trans. 1 2002, 69 - 2a
Overman LE.Lesuisse D.Hashimoto M. J. Am. Chem. Soc. 1983, 105: 5373Reference Ris Wihthout Link - 2b
Overman LE.Freerks RL. J. Org. Chem. 1981, 46: 2833Reference Ris Wihthout Link - 2c
Evans DA.Miller SJ.Lectka T.von Matt P. J. Am. Chem. Soc. 1999, 121: 7559Reference Ris Wihthout Link - 2d
Huang Y.Iwama T.Rawal VH.
J. Am. Chem. Soc. 2000, 122: 7843Reference Ris Wihthout Link - 3a
Jansen R.Kunze B.Reichenbach H.Höfle G. Eur. J. Org. Chem. 2000, 913Reference Ris Wihthout Link - 3b
Kunze B.Jansen R.Sasse F.Höfle G.Reichenbach H. J. Antibiot. 1998, 51: 1075Reference Ris Wihthout Link - 3c
Erickson KL.Beutler JA.Cardellina JH.Boyd MR. J. Org. Chem. 1997, 62: 8188Reference Ris Wihthout Link - 3d
Tanaka J.-I.Higa T. Tetrahedron Lett. 1996, 37: 5535Reference Ris Wihthout Link - 4
Blot V.Reboul V.Metzner P. J. Org. Chem. 2004, 69: 1196 - 5a
Abarbri M.Parrain JL.Cintrat JC.Duchene A. Synthesis 1996, 82Reference Ris Wihthout Link - 5b
Abarbri M.Parrain JL.Duchene A. Synth. Commun. 1998, 28: 239Reference Ris Wihthout Link - 5c
Snider BB.Song F. Org. Lett. 2000, 2: 407Reference Ris Wihthout Link - 6a
Dias LC.de Oliveira LG. Org. Lett. 2001, 3: 3951Reference Ris Wihthout Link - 6b
Tanaka R.Hirano S.Urabe H.Sato F. Org. Lett. 2003, 5: 67Reference Ris Wihthout Link - 6c
Pan X.Cai Q.Ma D. Org. Lett. 2004, 6: 1809 ; and references cited thereinReference Ris Wihthout Link - 7a
Takahashi T.Li Y.Tsai FY.Nakajima K. Organometallics 2001, 20: 595Reference Ris Wihthout Link - 7b
van Wagenen BC.Livinghouse T. Tetrahedron Lett. 1989, 30: 3495Reference Ris Wihthout Link - 7c
Williams AC.Sheffels P.Sheehan D.Livinghouse T. Organometallics 1989, 8: 1566Reference Ris Wihthout Link - 7d
Takai K.Kataoka Y.Yoshizumi K.Oguchi Y. Chem. Lett. 1991, 1479Reference Ris Wihthout Link - 7e
Ma S.Xie H. J. Org. Chem. 2002, 67: 6575Reference Ris Wihthout Link - 7f
Li Y.Matsumura H.Yamanaka M.Takahashi T. Tetrahedron 2004, 60: 1393Reference Ris Wihthout Link - 7g
Oshita M.Yamashita K.Tobisu M.Chatani N. J. Am. Chem. Soc. 2005, 127: 761Reference Ris Wihthout Link - 8a
Ishitani H.Nagayama S.Kobayashi S. J. Org. Chem. 1996, 61: 1902Reference Ris Wihthout Link - 8b
Shindo M.Oya S.Sato Y.Shishido K. Hetereocycles 2000, 52: 545Reference Ris Wihthout Link - 8c
Shindo M.Oya S.Murakami R.Sato Y.Shishido K. Tetrahedron Lett. 2000, 41: 5947Reference Ris Wihthout Link - 8d
Concellon JM.Bardales E. J. Org. Chem. 2003, 68: 9492Reference Ris Wihthout Link - 9
Murai T.Fujishima A.Iwamoto C.Kato S. J. Org. Chem. 2003, 68: 7979 - 10
D’Souza BR.Louie J. Org. Lett. 2009, 11: 4168 - 11
Wang C.Lu J.Mao G.Xi Z. J. Org. Chem. 2005, 70: 5150 - 12 For a review, see:
Casiraghi G.Zanardi F.Appendino G.Rassu G. Chem. Rev. 2000, 100: 1929 - 13a
Chen Y.-C.Xue D.Deng J.-G.Cui X.Zhu J.Jiang Y.-Z. Tetrahedron Lett. 2004, 45: 1555Reference Ris Wihthout Link - 13b
Xue D.Chen Y.-C.Cui X.Wang Q.-W.Zhu J.Deng J.-G. J. Org. Chem. 2005, 70: 3584Reference Ris Wihthout Link - 14a For
similar work, see:
Xue D.Chen Y.-C.Cun L.-F.Wang QW.Zhu J.Deng J.-G. Org. Lett. 2005, 7: 5293Reference Ris Wihthout Link - 14b
Poulsen TB.Alemparte C.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 11614Reference Ris Wihthout Link - 14c
Poulsen TB.Bell M.Jørgensen KA. Org. Biomol. Chem. 2006, 4: 63Reference Ris Wihthout Link - 15 For a recent review on vinylogous
reactions, see:
Denmark SEJR.Heemstra JR.Beutner GL. Angew. Chem. Int. Ed. 2005, 44: 4682 - 16
Babu TH.Joseph AA.Muralidharan D.Perumal PT. Tetrahedron Lett. 2010, 51: 994 - 17
Babu TH.Karthik K.Perumal PT. Synlett 2010, 1128 - The thermal electrocyclic isomerization of fused α-pyrans is common, see:
- 18a
Trost BM.Rudd MT.Costa MG.Lee PI.Pomerantz AE. Org. Lett. 2004, 6: 4235Reference Ris Wihthout Link - 18b
Marvell EN.Chadwick T.Caple G.Gosink T.Zimmer G. J. Org. Chem. 1972, 37: 2992Reference Ris Wihthout Link - 18c
Kluge AF.Lillya CP. J. Org. Chem. 1971, 36: 1979Reference Ris Wihthout Link - 18d
Marvell EN.Caple G.Gosink TA.Zimmer G. J. Am. Chem. Soc. 1966, 88: 619Reference Ris Wihthout Link
References
General Procedure
for the Synthesis of Dienamide 3a
The mixture of vinyl
malononitrile 1a (1.5 mmol), aldehyde 2a (1 mmol), and Et3N (1 mmol)
in ethylene glycol (7 mL) was stirred at 40 ˚C
for 40 min. After the reaction was complete as indicated by TLC,
the reaction mixture was cooled to r.t. diluted with acid H2O
(10 mL). The resulting precipitate was filtered and subjected to
chromatographic purification over silica gel (Merck; 100-200
mesh; EtOAc-hexane = 3:7) to obtain dienamide 3a (78%) as a single diastereomer.
Spectral Data of Dienamide 3a (Table 1, Entry
1)
Off-white solid; yield 78%; mp 392 ˚C. ¹H
NMR (500 MHz, DMSO-d
6): δ = 1.55
(m, 2 H), 1.75 (m, 2 H), 2.53 (m, 4 H), 6.42 (s, 1 H), 7.21 (d, J = 8.4 Hz,
2 H), 7.38 (d, J = 8.4
Hz, 2 H), 7.53 (s, 1 H, D2O exchangeable), 7.87 (s, 1
H, D2O exchangeable). ¹³C
NMR (125 MHz, DMSO-d
6): δ = 26.0, 26.4,
29.9, 35.1, 106.6, 116.8, 127.2, 128.9, 128.9, 130.1, 131.4, 132.6,
135.0, 139.3, 164.3, 164.5. IR (KBr): νmax = 3397,
3385, 2935, 2216, 1673, 1388, 1092, 626 cm-¹.
ESI-MS: 287 [M + 1]. Anal. Calcd (%)
for C16H15ClN2O: C, 67.02; H, 5.27;
N, 9.77. Found: C, 66.97; H, 5.21; N, 9.71.
Spectral
Data of Dienamide 3k (Table 1, Entry 11)
Off-white
solid; yield 80%; mp 364 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 0.89 (t, J = 6.9 Hz,
3 H), 1.32 (m, 4 H), 1.47 (m, 2 H), 1.64 (m, 2 H), 2.82 (t, J = 8.4 Hz,
2 H), 5.87 (s, 1 H, D2O exchangeable), 6.33 (s, 1 H,
D2O exchangeable), 7.17 (d, J = 16.9
Hz, 1 H), 7.69 (d, J = 8.4
Hz, 2 H), 8.22 (d, J = 8.4
Hz, 2 H), 8.58 (d, J = 16.1
Hz. 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 14.1,
22.5, 29.5, 30.3, 31.4, 33.8, 105.6, 117.8, 124.2, 124.2, 128.0,
128.7, 128.7, 137.1, 141.9, 148.2, 163.1, 166.0. IR (KBr): νmax = 3358,
3187, 2930, 2217, 1670, 1600, 1521, 1338 cm-¹.
ESI-MS: 328 [M + 1]. Anal. Calcd (%)
for C18H21N3O3: C, 66.04;
H, 6.47; N, 12.84. Found: C, 66.01; H, 6.43; N, 12.77.
Crystallographic data for compound 3a in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplemental publication No. CCDC- 775677. Copies of the data can be obtained, free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033 or email: deposit@ccdc.cam.ac.uk].