References and Notes
For reviews, see:
<A NAME="RU03510ST-1A">1a</A>
Chenevert R.
Pelchat N.
Jacques F.
Curr.
Org. Chem.
2006,
10:
1067
<A NAME="RU03510ST-1B">1b</A>
Grasa GA.
Singh R.
Nolan SP.
Synthesis
2004,
971
<A NAME="RU03510ST-1C">1c</A>
Hoydonckx HE.
De Vos DE.
Chavan SA.
Jacobs PA.
Top. Catal.
2004,
27:
83
<A NAME="RU03510ST-1D">1d</A>
Otera J.
In Esterification
Wiley-VCH;
Weinheim:
2003.
<A NAME="RU03510ST-1E">1e</A>
Larock R. In Comprehensive Organic Transformations
2nd
ed.:
Wiley;
New York:
1996.
<A NAME="RU03510ST-1F">1f</A>
Otera J.
Chem.
Rev.
1993,
93:
1449
<A NAME="RU03510ST-1G">1g</A>
Mulzer J. In Comprehensive Organic Synthesis
Vol.
6:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1992.
For recent progress on the catalytic
transesterification, see:
<A NAME="RU03510ST-2A">2a</A>
Iwasaki T.
Maegawa Y.
Hayashi Y.
Ohshima T.
Mashima K.
J.
Org. Chem.
2008,
73:
5147
<A NAME="RU03510ST-2B">2b</A>
Ishihara K.
Niwa M.
Kosugi Y.
Org.
Lett.
2008,
10:
2187
<A NAME="RU03510ST-2C">2c</A>
Kondaiah GCM.
Reddy LA.
Babu KS.
Gurav VM.
Huge KG.
Bandichhor R.
Reddy PP.
Bhattacharya A.
Anand RV.
Tetrahedron Lett.
2008,
49:
106
<A NAME="RU03510ST-2D">2d</A>
Inahashi N.
Fujiwara T.
Sato T.
Synlett
2008,
605
<A NAME="RU03510ST-2E">2e</A>
Ohshima T.
Iwasaki T.
Maegawa Y.
Yoshiyama A.
Mashima K.
J.
Am. Chem. Soc.
2008,
130:
2944
<A NAME="RU03510ST-2F">2f</A>
Remme N.
Koschek K.
Schneider C.
Synlett
2007,
491
<A NAME="RU03510ST-2G">2g</A>
Jiang P.
Zhang D.
Li Q.
Lu Y.
Catal. Lett.
2006,
110:
101
<A NAME="RU03510ST-2H">2h</A>
de Sairre MI.
Bronze-Uhle
ES.
Donate PM.
Tetrahedron
Lett.
2005,
46:
2705
<A NAME="RU03510ST-2I">2i</A>
Singh R.
Kissling RM.
Letellier M.-A.
Nolan SP.
J. Org. Chem.
2004,
69:
209
<A NAME="RU03510ST-3">3</A>
Hamada M.
Shinada T.
Ohfune Y.
Org.
Lett.
2009,
11:
4664
<A NAME="RU03510ST-4">4</A>
Green TW.
Wuts PG. In Protecting
Groups in Organic Synthesis
4th ed.:
John
Wiley & Sons, Inc.;
New York:
2007.
<A NAME="RU03510ST-5">5</A>
Corey EJ.
Raju N.
Tetrahedron Lett.
1983,
24:
5571
<A NAME="RU03510ST-6">6</A>
Rose NGW.
Blaskovich MA.
Evindar G.
Wilkinson S.
Luo Y.
Fishlock D.
Reid C.
Lajoie GA.
Org. Synth., Coll. Vol. X
Wiley;
New
York:
2004.
p.73
For recent examples, see:
<A NAME="RU03510ST-7A">7a</A>
Winkler JD.
Fitzgerald
ME.
Synlett
2009,
562
<A NAME="RU03510ST-7B">7b</A>
Jahn U.
Dinca E.
Chem. Eur. J.
2009,
15:
58
<A NAME="RU03510ST-7C">7c</A>
Zhdanko AG.
Nenajdenko VG.
J.
Org. Chem.
2009,
74:
884
<A NAME="RU03510ST-7D">7d</A>
Ichige T.
Okano Y.
Kanoh N.
Nakata M.
J. Org. Chem.
2009,
74:
230
<A NAME="RU03510ST-7E">7e</A>
Tange S.
Fukuhara T.
Hara S.
Synthesis
2008,
3219
<A NAME="RU03510ST-7F">7f</A>
Codelli JA.
Baskin JM.
Agard NJ.
Bertozzi CR.
J.
Am. Chem. Soc.
2008,
130:
11486
<A NAME="RU03510ST-7G">7g</A>
Nicolaou KC.
Dethe DH.
Leung GYC.
Zou B.
Chen DY.-K.
Chem. Asian J.
2008,
3:
413
<A NAME="RU03510ST-7H">7h</A>
Martynow JG.
Jozwik J.
Szelejewski W.
Achmatowicz O.
Kutner A.
Wisniewski K.
Winiarski J.
Zegrocka-Stendel O.
Golebiewski P.
Eur. J. Org. Chem.
2007,
689
<A NAME="RU03510ST-7I">7i</A>
Bowen ME.
Monguchi Y.
Sankaranarayanan R.
Vagner J.
Begay LJ.
Xu L.
Jagadish B.
Hruby VJ.
Gillies
RJ.
Mash EA.
J.
Org. Chem.
2007,
72:
1675
<A NAME="RU03510ST-7J">7j</A>
Raghavan B.
Johnson RL.
J. Org. Chem.
2006,
71:
2151
<A NAME="RU03510ST-7K">7k</A>
Snider BB.
Gao X.
Org. Lett.
2005,
7:
4419
<A NAME="RU03510ST-7L">7l</A>
Bernad PL.
Khan S.
Korshun VA.
Southern
EM.
Shchepinov MS.
Chem. Commun.
2005,
3466
<A NAME="RU03510ST-7M">7m</A>
Paek S.-M.
Seo S.-Y.
Kim S.-H.
Jung J.-W.
Lee Y.-S.
Jung J.-K.
Suh Y.-G.
Org.
Lett.
2005,
7:
3159
<A NAME="RU03510ST-7N">7n</A>
Hansen DB.
Wan X.
Carroll PJ.
Joullie MM.
J.
Org. Chem.
2005,
70:
3120
<A NAME="RU03510ST-7O">7o</A>
Kai T.
Sun X.-L.
Faucher KM.
Apkarian RP.
Chaikof EL.
J. Org. Chem.
2005,
70:
2606
<A NAME="RU03510ST-7P">7p</A>
Ichige T.
Kamimura S.
Mayumi K.
Sakamoto Y.
Terashita S.
Ohteki E.
Kanoh N.
Nakata M.
Tetrahedron Lett.
2005,
46:
1263
<A NAME="RU03510ST-7Q">7q</A>
Giner J.
Org.
Lett.
2005,
7:
499
<A NAME="RU03510ST-8">8</A>
Typical Synthetic
Procedure: To a solution of the N-Cbz-threonine
ethyl ester (7; 1 mmol) in MeOH (10 mL)
was added K2HPO4 (0.1 equiv). The mixture
was heated at reflux for 1 h and concentrated under reduced pressure.
The crude material was then dissolved in EtOAc-hexane (1:1,
10 mL). The mixture was filtered through a thin silica gel pad.
The filtrate was concentrated under reduced pressure to give the N-Cbz-threonine methyl ester(8) in 92% yield.
<A NAME="RU03510ST-9A">9a</A>
Transesterification of the Ortho Ester 38 to
40: In a similar manner to the reported method,6 38 was synthesized from Fmoc-Gly-OH in
45% yield (two steps). Analytical data of 38:
IR (ATR): 3347, 3066, 2944, 2881, 1722, 1525, 1450, 1402, 1245,
1049, 1004, 910 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 7.3 Hz, 2 H), 7.60 (d, J = 7.3 Hz, 2 H), 7.38 (t, J = 7.3 Hz, 2 H), 7.27 (t, J = 7.3 Hz, 1 H), 5.09 (br s,
1 H), 4.38 (d, J = 6.9 Hz, 2
H), 4.23 (t, J = 6.9, 2 H),
3.92 (s, 6 H), 3.43 (br d, J = 6.0
Hz, 2 H), 0.82 (s, 3 H). HRMS (FAB): m/z [M + H]+ calcd
for C22H24NO5: 382.1655; found:
382.1654.
<A NAME="RU03510ST-9B">9b</A>
A mixture of 38 (130 mg, 0.33 mmol) in AcOH-THF-H2O
(5:1:1, 0.7 mL) was stirred for 12 h and concentrated under reduced
pressure. The remaining AcOH and H2O were removed as
an azeotropic mixture of toluene. The crude 39 was
subjected to the next step without purification. Analytical data
of 39: ¹H NMR (400
MHz, CDCl3): δ = 7.76 (d, J = 7.3 Hz, 2 H), 7.60 (d,
J = 7.3 Hz, 2 H),
7.40 (t, J = 7.3 Hz, 2 H), 7.39
(t, J = 7.3 Hz, 2 H), 5.45 (br
s, 1 H), 4.41 (d, J = 7.1 Hz,
2 H), 4.21-4.25 (m, 3 H), 4.01 (br s, 1 H), 3.55 (br s,
4 H), 0.85 (s, 3 H).
<A NAME="RU03510ST-9C">9c</A>
To a solution of 39 in MeOH (3.5 mL) was added K2HPO4 (0.11
mmol). The mixture was heated to reflux for 1 h and concentrated
under reduced pressure. The crude mixture was diluted with EtOAc-hexane
(1:1, 10 mL) and filtered through a thin silica gel pad. The filtrate
was concentrated under reduced pressure to give 40 in
94% yield. The analytical data were identical to the authentic
data.¹0
<A NAME="RU03510ST-10">10</A>
Mineno T.
Kansui H.
Chem. Pharm. Bull.
2006,
54:
918
<A NAME="RU03510ST-11">11</A>
The role of K2HPO4 in
the mild transesterification reaction has been unclear. In our experiments
using various inorganic salts, the reaction rate and product yield
were varied and not necessarily dependent on the cationic or anionic
nature of inorganic salts.
<A NAME="RU03510ST-12">12</A> The transesterification reaction
of methyl esters to other esters using K2CO3 has
been reported, see:
Barry J.
Bram G.
Petit A.
Tetrahedron
Lett.
1988,
29:
4567
<A NAME="RU03510ST-13">13</A> Catalytic activity and selectivity
of various inorganic salts except for K2HPO4 have
been evaluated for the transesterification reactions of sunflower
oil to produce long-chain fatty acid methyl esters (biodiesel),
see:
Arzamendi G.
Arguinarena E.
Campo I.
Zabala S.
Gandia LM.
Catal. Today
2008,
133-135:
305