Synthesis 2010(24): 4154-4168  
DOI: 10.1055/s-0030-1258322
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Coupling Reaction of α-Diazocarbonyl Compounds with Aromatic Boronic Acids or Halides

Cheng Peng, Guobin Yan, Yan Wang, Yubo Jiang, Yan Zhang, Jianbo Wang*
Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China
Fax: +86(10)62751708; e-Mail: wangjb@pku.edu.cn;
Further Information

Publication History

Received 6 September 2010
Publication Date:
15 November 2010 (online)

Abstract

Efficient palladium-catalyzed cross-coupling reactions of α-diazocarbonyl compounds and arylboronic acids or aryl halides have been developed. The reaction proceeds smoothly for a range of diazo compounds, boronic acids, and halides. The coupling reaction conditions tolerate various substituents on the aromatic rings of the substrates, such as chloro, fluoro, acyl, oxo, ester, and nitro groups. This coupling reaction constitutes a novel access to α-aryl-substituted α,β-unsaturated carbonyl compounds. Mechanistically, palladium-carbene is supposed to be the key intermediate; its formation is followed by migratory insertion of an aryl group to the carbenic carbon of the palladium-carbene complex and subsequent β-hydride elimination. Kinetic isotope effect (KIE) data measured for intra- and intermolecular competition experiments suggest that β-hydride elimination is not involved in the rate-determining step.

    References

  • For selected comprehensive reviews, see:
  • 1a Ye T. McKervey MA. Chem. Rev.  1994,  94:  1091 
  • 1b Doyle MP. McKervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds   Wiley-Interscience; New York: 1998. 
  • 1c Zhang Z. Wang J. Tetrahedron  2008,  64:  6577 
  • For examples of diazo-compound reactions catalyzed by transition-metal complexes other than rhodium(II) or copper(I) complexes, see the following references. For ruthenium-complex-catalyzed reactions, see:
  • 2a Bonaccorsi C. Mezzetti A. Organometallics  2005,  24:  4953 
  • 2b Wang M.-Z. Xu H.-W. Liu Y. Wong M.-K. Che C.-M. Adv. Synth. Catal.  2006,  348:  2391 
  • 2c Bonaccorsi C. Santoro F. Gischig S. Mezzetti A. Organometallics  2006,  25:  2002 
  • 2d Xiao Q. Wang J. Acta Chim. Sin.  2007,  65:  1733 
  • For cobalt-complex-catalyzed reactions, see:
  • 2e Chen Y. Zhang XP. J. Org. Chem.  2004,  69:  2431 
  • 2f Chen Y. Fields KB. Zhang XP. J. Am. Chem. Soc.  2004,  126:  14718 
  • For chromium-complex-catalyzed reactions, see:
  • 2g Hahn ND. Nieger M. Dötz KH. Eur. J. Org. Chem.  2004,  1049 
  • For iron-complex-catalyzed reactions, see:
  • 2h Li Y. Huang J.-S. Zhou Z.-Y. Che C.-M. You X.-Z. J. Am. Chem. Soc.  2002,  124:  13185 
  • 2i Du G. Andrioletti B. Rose E. Woo LK. Organometallics  2002,  21:  4490 
  • 2j Edulji SK. Nguyen ST. Organometallics  2003,  22:  3374 
  • 2k Aviv I. Gross Z. Chem. Commun.  2006,  4477 
  • For silver-complex-catalyzed reactions, see:
  • 2l Dias HVR. Browning RG. Polach SA. Diyabalanage HVK. Lovely CJ. J. Am. Chem. Soc.  2003,  125:  9270 
  • 2m Thompson JL. Davies HML. J. Am. Chem. Soc.  2007,  129:  6090 
  • For gold-complex-catalyzed reactions, see:
  • 2n Fructos MR. Belderrain TR. Frémont P. Scott NM. Nolan SP. Díaz-Requejo MM. Pérez PJ. Angew. Chem. Int. Ed.  2005,  44:  5284 
  • For reviews, see:
  • 3a Negishi E.-i. Handbook of Organopalladium Chemistry for Organic Synthesis   Wiley-Interscience; New York: 2002. 
  • 3b Tsuji J. Palladium Reagents and Catalysts. New Perspectives for the 21st Century   2nd ed.:  Wiley; Chichester: 2004. 
  • 3c de Meijere A. Diederich F. Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  Wiley-VCH; Weinheim: 2004. 
  • 3d King AO. Yasuda N. Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals, In Topics in Organometallic Chemistry   Vol. 6:  Springer; New York: 2004.  p.205-245  
  • For the most recent reviews, see:
  • 4a Cacchi S. Fabrizi G. Chem. Rev.  2005,  105:  2873 
  • 4b Christmann U. Vilar R. Angew. Chem. Int. Ed.  2005,  44:  366 
  • 4c Rollet P. Kleist W. Dufaud V. Djakovitch L. J. Mol. Catal.  2005,  241:  39 
  • 4d Zapf A. Beller M. Chem. Commun.  2005,  431 
  • 4e Frisch A. Beller M. Angew. Chem. Int. Ed.  2005,  44:  674 
  • 4f Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4442 
  • 4g Campeau L.-C. Fagnou K. Chem. Commun.  2006,  1253 
  • 4h Roglans A. Pla-Quintana A. Moreno-Mañas M. Chem. Rev.  2006,  106:  4622 
  • 4i Reiser O. Angew. Chem. Int. Ed.  2006,  45:  2838 
  • 4j Liebscher J. Yin L. Chem. Rev.  2007,  107:  133 
  • 4k Doucet H. Hierso J.-C. Angew. Chem. Int. Ed.  2007,  46:  834 
  • 4l Surry DS. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  6338 
  • 4m Alonso F. Beletskaya IP. Yus M. Tetrahedron  2008,  64:  3047 
  • For studies on stable palladium-carbene species, see:
  • 5a Albéniz AC. Espinet P. Manrique R. Pérez-Mateo A. Angew. Chem. Int. Ed.  2002,  41:  2363 
  • 5b Bröring M. Brandt CD. Stellwag S. Chem. Commun.  2003,  2344 
  • 5c Danopoulos AA. Tsoureas N. Green JC. Hursthouse MB. Chem. Commun.  2003,  756 
  • 5d Solé D. Vallverdú L. Solans X. Font-Bardia M. Bonjoch J. Organometallics  2004,  23:  1438 
  • 5e Albéniz AC. Espinet P. Manrique R. Pérez-Mateo A. Chem. Eur. J.  2005,  11:  1565 
  • 5f Albéniz AC. Espinet P. Pérez-Mateo A. Nova A. Ujaque G. Organometallics  2006,  25:  1293 
  • 5g López-Alberca MP. Mancheño MJ. Fernández I. Gómez-Gallego M. Sierra MA. Torres R. Org. Lett.  2007,  9:  1757 
  • For examples, see:
  • 6a Trost BM. Tanoury GJ. J. Am. Chem. Soc.  1988,  110:  1636 
  • 6b Trost BM. Hashmi ASK. Angew. Chem. Int. Ed.  1993,  32:  1085 
  • 6c Schweizer S. Song Z.-Z. Meyer FE. Parsons PJ. de Meijere A. Angew. Chem. Int. Ed.  1999,  38:  1452 
  • 6d Miki K. Nishino F. Ohe K. Uemura S. J. Am. Chem. Soc.  2002,  124:  5260 
  • 6e Nakamura I. Bajracharya GB. Mizushima Y. Yamamoto Y. Angew. Chem. Int. Ed.  2002,  41:  4328 
  • 6f Fillion E. Taylor NJ. J. Am. Chem. Soc.  2003,  125:  12700 
  • 6g Ohno H. Takeoka Y. Miyamura K. Kadoh Y. Tanaka T. Org. Lett.  2003,  5:  4763 
  • 6h Gömez-Gallego M. Mancheño MJ. Sierra MA. Acc. Chem. Res.  2005,  38:  44 
  • 6i Trépanier V. Fillion E. Organometallics  2007,  26:  30 
  • 6j Shi M. Liu L.-P. Tang J. J. Am. Chem. Soc.  2006,  128:  7430 
  • 7a Herrmann WA. Kocker C. Angew. Chem. Int. Ed.  1997,  36:  2162 
  • 7b Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1290 
  • 7c Viciu MS. Nolan SP. Top. Organomet. Chem.  2005,  14:  241 
  • 7d Marion N. Nolan SP. Acc. Chem. Res.  2008,  41:  1440 
  • 8 For a review on the cyclopropanation of palladium-carbenes, see: Reiser O. In Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 1:  Negishi E.-i. Wiley; New York: 2002.  p.1561-1577  
  • 9a Doyle MP. Chem. Rev.  1986,  86:  919 
  • 9b Anciaux AJ. Hubert AJ. Noels AF. Petiniot N. Teyssié P.
    J. Org. Chem.  1980,  45:  695 
  • 10a Ihara E. Haida N. Iio M. Inoue K. Macromolecules  2003,  36:  36 
  • 10b Ihara E. Fujioka M. Haida N. Itoh T. Inoue K. Macromolecules  2005,  38:  2101 
  • 10c Ihara E. Nakada A. Itoh T. Inoue K. Macromolecules  2006,  39:  6440 
  • 10d Ihara E. Kida M. Fujioka M. Haida N. Itoh T. Inoue K. J. Polym. Sci.: Part A: Polym. Chem.  2007,  45:  1536 
  • 11 Chen S. Ma J. Wang J. Tetrahedron Lett.  2008,  49:  6781 
  • 12a Greenman KL. Carter DS. Van Vranken DL. Tetrahedron  2001,  57:  5219 
  • 12b Greenman KL. Van Vranken DL. Tetrahedron  2005,  61:  6438 
  • 12c Devine SKJ. Van Vranken DL. Org. Lett.  2007,  9:  2047 
  • 12d Barluenga J. Moriel P. Valdés C. Aznar F. Angew. Chem. Int. Ed.  2007,  46:  5587 
  • 12e Barluenga J. Tomás-Gamasa M. Moriel P. Aznar F. Valdés C. Chem. Eur. J.  2008,  14:  4792 
  • 12f Peng C. Wang Y. Wang J.
    J. Am. Chem. Soc.  2008,  130:  1566 
  • 12g Chen S. Wang J. Chem. Commun.  2008,  4198 
  • 12h Devine SKJ. Van Vranken DL. Org. Lett.  2008,  10:  1909 
  • 12i Kudirka R. Van Vranken DL. J. Org. Chem.  2008,  73:  3585 
  • 12j Yu W.-Y. Tsoi Y.-T. Zhou Z. Chan ASC. Org. Lett.  2009,  11:  469 
  • 12k Xiao Q. Ma J. Yang Y. Zhang Y. Wang J. Org. Lett.  2009,  11:  4732 
  • 12l Kudirka R. Devine SKJ. Adams CS. Van Vranken DL. Angew. Chem. Int. Ed.  2009,  48:  3677 
  • 12m Zhang Z. Liu Y. Gong M. Zhao X. Zhang Y. Wang J. Angew. Chem. Int. Ed.  2010,  49:  1139 
  • 12n Zhao X. Jing J. Lu K. Zhang Y. Wang J. Chem. Commun.  2010,  46:  1724 
  • 13a Suzuki A. Acc. Chem. Res.  1982,  15:  178 
  • 13b Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • For direct reaction of diazo compounds with boronic acids or their derivatives, see:
  • 14a Peng C. Zhang W. Yan G. Wang J. Org. Lett.  2009,  11:  1667 
  • 14b Barluenga J. Tomás-Gamasa M. Aznar F. Valdés C. Nat. Chem.  2009,  1:  433 
  • 15a Huang X. Anderson KW. Zim D. Jiang L. Klapars A. Buchwald SL. J. Am. Chem. Soc.  2003,  125:  6653 
  • 15b Nguyen HN. Huang X. Buchwald SL. J. Am. Chem. Soc.  2003,  125:  11818 
  • For examples, see:
  • 16a Du X. Suguro M. Hirabayashi K. Mori A. Org. Lett.  2001,  3:  3313 
  • 16b Enquist P.-A. Lindh J. Nilsson P. Larhed M. Green Chem.  2006,  8:  338 
  • 16c Yoo KS. Yoon CH. Jung KW. J. Am. Chem. Soc.  2006,  128:  16384 
  • For selected reviews on palladium-catalyzed carbonylations, see:
  • 17a Colquhoun HM. Thompson DJ. Twigg MV. Carbonylation. Direct Synthesis of Carbonyl Compounds   Plenum; New York: 1991. 
  • 17b Handbook of Organopalladium Chemistry for Organic Synthesis   Negishi E.-i. Wiley; New York: 2002.  Chap. VI. p.2505-2714  
  • 17c Barnard CFJ. Organometallics  2008,  27:  5402 
  • 17d Brennführer A. Neumann H. Beller M. Angew. Chem. Int. Ed.  2009,  48:  4114 
  • 17e Brennführer A. Neumann H. Beller M. ChemCatChem  2009,  1:  28 
  • 17f Grigg R. Mutton SP. Tetrahedron  2010,  66:  5515 
  • It has been reported that syn-β-hydride elimination has a substantial kinetic isotope effect (KIE, typical values of k H/k D = 2-3). For examples, see:
  • 18a Keinan E. Kumar S. Dangur V. Vaya J. J. Am. Chem. Soc.  1994,  116:  11151 
  • 18b Netherton MR. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  3910 
  • The value of KIE for anti-β-hydride elimination is higher (k H/k D = 5-7); see:
  • 18c Chrisope DR. Beak P. Saunders WH. J. Am. Chem. Soc.  1988,  110:  230 
  • 18d Takacs JM. Lawson EC. Clement F. J. Am. Chem. Soc.  1997,  119:  5956 
  • 19 Levin JI. Tetrahedron Lett.  1993,  34:  6211 
  • 20 Silveira PB. Monteiro AL. J. Mol. Catal. A: Chem.  2006,  247:  1 
  • 21 Nishimura K. Ono M. Nagaoka Y. Tomioka K. Angew. Chem. Int. Ed.  2001,  40:  440 
  • 22 Berthiol F. Doucet H. Santelli M. Eur. J. Org. Chem.  2003,  1091 
  • 23 Gerster M, Maeder D, and Rotzinger B. inventors; PCT Int. Appl. WO  2006024611.  ; Chem. Abstr. 2006, 333233
  • 24 Selva M. Tundo P. J. Org. Chem.  2006,  71:  1464 
  • 25 Jefford CW. Bernardinelli G. Wang Y. Spellmeyer DC. Buda A. Houk KN. J. Am. Chem. Soc.  1992,  114:  1157 
  • 26 Chang MY. Chen ST. Chang NC. Tetrahedron  2002,  58:  3623 
  • 27 Zhang C. Ito H. Maeda Y. Shirai N. Ikeda S. Sato Y. J. Org. Chem.  1999,  64:  581 
  • 28 Reger DL. Mintz E. Lebioda L. J. Am. Chem. Soc.  1986,  108:  1940 
  • 29 Jacobi PA. Brielmann HL. Cann RO. J. Org. Chem.  1994,  59:  5305 
  • 30 Hon YS. Hsu TR. Chen CY. Lin YH. Chang FJ. Hsieh CH. Szu PH. Tetrahedron  2003,  59:  1509 
  • 31 Felpin F.-X. J. Org. Chem.  2005,  70:  8575