Abstract
Heating of o -ethynylanilines with
isoselenocyanates directly resulted in the 6-exo -dig mode ring-closure reaction of the
adducts to give the (Z )-2-imino-4-methylene-3-selenaquinolines
in moderate to good yields. Based on this convenient, solvent-free, catalyst-free
method, several 3-selenaquinoline derivatives (3,1-benzoselenazines)
were easily obtained in one pot. Successful application of the microwave-assisted
synthesis of these compounds was also investigated.
Key words
o -ethynyaniline - isoselenocyanate - 3-selenaquinoline - 6-exo mode
cyclization - microwave
References
<A NAME="RF07110SS-1">1 </A> This paper constitutes Part 31 in
the series ‘Studies on Tellurium-Containing Heterocycles’,
For Part 30, see:
Sashida H.
Kaname M.
Nakayama A.
Suzuki H.
Minoura M.
Tetrahedron
2010,
66:
5149
<A NAME="RF07110SS-2A">2a </A>
Selenium in Biology and Medicine
Wengel A.
Springer;
Berlin:
1989.
<A NAME="RF07110SS-2B">2b </A>
Burk RF.
Selenium in Biology and
Human Health
Springer;
New York:
1994.
<A NAME="RF07110SS-2C">2c </A>
Xu Y.
Kool ET.
J. Am. Chem. Soc.
2000,
122:
9040
<A NAME="RF07110SS-2D">2d </A>
Mugesh G.
du Mont W.-W.
Sies H.
Chem.
Rev.
2001,
101:
2125
<A NAME="RF07110SS-2E">2e </A>
Soriano-Garcia M.
Curr. Med. Chem.
2004,
11:
1657
<A NAME="RF07110SS-3">3 </A>
Koketsu M.
Ishihara H.
Curr. Org. Chem.
2003,
7:
175
<A NAME="RF07110SS-4A">4a </A>
Koketsu M.
Tanaka Y.
Hiramatsu S.
Ishihara H.
Heterocycles
2001,
55:
1181
<A NAME="RF07110SS-4B">4b </A>
Koketsu M.
Senda T.
Hiramatsu S.
Ishihara H.
J. Chem. Soc., Perkin Trans.
1
1999,
453
<A NAME="RF07110SS-4C">4c </A>
Koketsu M.
Hiramatsu S.
Ishihara H.
Chem.
Lett.
1999,
485
<A NAME="RF07110SS-4D">4d </A>
Bochu C.
Couture A.
Grandelaudon P.
J.
Org. Chem.
1988,
53:
4852
<A NAME="RF07110SS-4E">4e </A>
Dubreuil D.
Pradere JP.
Giraudeau N.
Goli M.
Tonnard F.
Tetrahedron
Lett.
1995,
36:
237
<A NAME="RF07110SS-4F">4f </A>
Sekiguchi M.
Ogawa A.
Fujiwara S.
Ryu I.
Kambe N.
Sonoda N.
Chem. Lett.
1990,
913
<A NAME="RF07110SS-4G">4g </A>
Shimada K.
Akikawa K.
Fujita T.
Aoyagi S.
Takikawa Y.
Kabuto C.
Chem. Lett.
1997,
701
<A NAME="RF07110SS-5A">5a </A>
Takahashi M.
Watanabe S.
Kasai T.
Heterocycles
1980,
14:
1921
<A NAME="RF07110SS-5B">5b </A>
Liebscher J.
Hartmann H.
Tetrahedron Lett.
1976,
17:
2005
<A NAME="RF07110SS-6">6 </A>
Yokoyama M.
Kumada K.
Hatanaka H.
Shiraishi T.
Bull. Chem. Soc. Jpn.
1986,
48:
1613
<A NAME="RF07110SS-7A">7a </A>
Simchen G.
Angew. Chem., Int. Ed. Engl.
1968,
7:
464
<A NAME="RF07110SS-7B">7b </A>
Simchen G.
Wenzelburger J.
Chem. Ber.
1970,
103:
413
<A NAME="RF07110SS-7C">7c </A>
Simchen G.
Entenmann G.
Angew. Chem., Int. Ed. Engl.
1973,
12:
119
<A NAME="RF07110SS-8">8 </A>
Garud DR.
Koketsu M.
Ishihara H.
Molecules
2007,
12:
504
<A NAME="RF07110SS-9">9 </A>
Toyada Y.
Garuda DR.
Koketsu M.
Heterocycles
2009,
78:
449
<A NAME="RF07110SS-10">10 </A>
Garud DR.
Toyoda Y.
Koketsu M.
Tetrahedron
Lett.
2009,
50:
3035
<A NAME="RF07110SS-11">11 </A>
Sommen GL.
Linden A.
Heimgartner H.
Tetrahedron Lett.
2005,
46:
6723
<A NAME="RF07110SS-12">12 </A>
Koketsu M.
Sakai T.
Kiyokuni T.
Garuda DR.
Ando H.
Ishihara H.
Heterocycles
2006,
68:
1604
<A NAME="RF07110SS-13">13 </A>
Sommen GL.
Linden A.
Heimgartner H.
Tetrahedron
2006,
62:
3344
<A NAME="RF07110SS-14">14 </A>
Ye S.
Ding Q.
Wang Z.
Zhou H.
Wu J.
Org. Biomol. Chem.
2008,
6:
4406
<A NAME="RF07110SS-15">15 </A>
Ding Q.
Wu J.
J. Comb. Chem.
2008,
10:
541
<A NAME="RF07110SS-16A">16a </A>
Sashida H.
Rev. Heteroat. Chem.
2000,
22:
59
<A NAME="RF07110SS-16B">16b </A>
Sashida H.
J.
Synth. Org. Chem. Jpn.
2001,
59:
355
<A NAME="RF07110SS-17">17 </A>
Sashida H.
Nakayama A.
Kaname M.
Synthesis
2008,
3229
<A NAME="RF07110SS-18">18 </A>
Martins MAP.
Frizzo CP.
Moreira DN.
Buriol L.
Machado P.
Chem. Rev.
2009,
109:
4140
<A NAME="RF07110SS-19A">19a </A>
Lidström P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RF07110SS-19B">19b </A>
Xu Y.
Guo Q.-X.
Heterocycles
2004,
63:
903
<A NAME="RF07110SS-19C">19c </A>
Jindal R.
Bajaj S.
Curr. Org. Chem.
2008,
12:
836
<A NAME="RF07110SS-19D">19d </A>
Hugel HM.
Molecules
2009,
14:
4936
<A NAME="RF07110SS-20">20 </A>
Single crystals of 3Dd were
obtained from solns of CHCl3 after slow evaporation of
the solvent at r.t. Diffraction data were collected on a Bruker
Apex-II CCD. The structure analysis is based on 2629 observed reflections
with I > 2.00σ(I ) and 217 variable parameters; colorless
prisms, C21 H16 N2 Se, FW = 375.32,
233 K, monoclinic, space group P 21 /n , a = 10.3882(7) Å, b = 8.3928(5) Å, c = 19.432(1) Å, β = 91.164(1)˚, V = 1693.9(2) ų , Z = 4, R = 0.0288, R
w
= 0.0759,
GOF = 1.037. The supplementary crystallographic
data for 3Dd (CCDC-773220) can be obtained
free of charge from the Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/products/csd/request/request.php4.
<A NAME="RF07110SS-21">21 </A>
Shi C.
Zhang Q.
Wang K.
J. Org. Chem.
1999,
64:
925
<A NAME="RF07110SS-22">22 </A>
Koradin C.
Dohle W.
Rodrigues A.
Schmid B.
Knochel P.
Tetrahedron
2003,
59:
157
<A NAME="RF07110SS-23">23 </A>
Woodgate PD.
Sutherland H.
J. Organomet. Chem.
2001,
629:
131
<A NAME="RF07110SS-24">24 </A>
Villemin D.
Goussu D.
Heterocycles
1989,
29:
1255
<A NAME="RF07110SS-25">25 </A>
Sonoda N.
Yamamoto G.
Tsutsumi S.
Bull
Chem. Soc. Jpn.
1972,
45:
2937
<A NAME="RF07110SS-26">26 </A>
Fernändes-Bolaños JG.
López .
Ulgar V.
Maya I.
Fuentes J.
Tetrahedron
Lett.
2004,
45:
4081