References and Notes
<A NAME="RY01110ST-1A">1a</A>
Trost BM.
Acc. Chem. Res.
2002,
35:
695
<A NAME="RY01110ST-1B">1b</A>
Li
C.-J.
Trost BM.
Proc. Natl. Acad. Sci.
U.S.A.
2008,
105:
13197
<A NAME="RY01110ST-1C">1c</A>
Anastas PT.
Kirchhoff MM.
Acc.
Chem. Res.
2002,
35:
686
<A NAME="RY01110ST-2A">2a</A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RY01110ST-2B">2b</A>
Anastas PT.
Warner JC.
Green Chemistry: Theory and Practice
Oxford
University Press;
Oxford:
1998.
<A NAME="RY01110ST-2C">2c</A>
Jenck JF.
Agterberg F.
Droescher MJ.
Green Chem.
2004,
6:
544
<A NAME="RY01110ST-3">3</A>
Corey EJ.
Cheng XM.
The
Logic of Chemical Synthesis
John Wiley and Sons;
New
York:
1989.
<A NAME="RY01110ST-4A">4a</A>
Godula K.
Sames D.
Science
2006,
312:
67
<A NAME="RY01110ST-4B">4b</A>
Bergman RG.
Nature (London)
2007,
446:
391
<A NAME="RY01110ST-4C">4c</A>
Jia C.
Kitamura T.
Fujiwara Y.
Acc.
Chem. Res.
2001,
34:
633
<A NAME="RY01110ST-4D">4d</A>
Ritleng V.
Sirlin C.
Pfeffer M.
Chem.
Rev.
2002,
102:
1731
<A NAME="RY01110ST-4E">4e</A>
Yu J.-Q.
Giri R.
Chen X.
Org. Biomol.
Chem.
2006,
4:
4041
<A NAME="RY01110ST-4F">4f</A>
Alberico D.
Scott ME.
Lautens M.
Chem.
Rev.
2007,
107:
174
<A NAME="RY01110ST-4G">4g</A>
Herrerias CI.
Yao X.
Li Z.
Li C.-J.
Chem. Rev.
2007,
107:
2546
<A NAME="RY01110ST-4H">4h</A>
Seregin IV.
Gevorgyan V.
Chem.
Soc. Rev.
2007,
36:
1173
<A NAME="RY01110ST-4I">4i</A>
Giri R.
Shi B.-F.
Engle KM.
Maugel N.
Yu J.-Q.
Chem.
Soc. Rev.
2009,
38:
3242
<A NAME="RY01110ST-4J">4j</A>
Ackermann L.
Pure.
Appl. Chem.
2010,
82:
1403
Selected examples of CDC reaction,
see:
<A NAME="RY01110ST-5A">5a</A>
Li C.-J.
Acc. Chem.
Res.
2009,
42:
335
<A NAME="RY01110ST-5B">5b</A>
Zhao L.
Baslé O.
Li C.-J.
Proc.
Natl. Acad. Sci. U.S.A.
2009,
106:
4106
<A NAME="RY01110ST-5C">5c</A>
Deng G.
Li C.-J.
Org. Lett.
2009,
11:
1171
<A NAME="RY01110ST-5D">5d</A>
Zhao L.
Li C.-J.
Angew. Chem. Int. Ed.
2008,
47:
7075
<A NAME="RY01110ST-5E">5e</A>
Deng G.
Zhao L.
Li C.-J.
Angew.
Chem. Int. Ed.
2008,
47:
6278
<A NAME="RY01110ST-5F">5f</A>
Li Z.
Cao L.
Li C.-J.
Angew.
Chem. Int. Ed.
2007,
46:
6505
<A NAME="RY01110ST-5G">5g</A>
Zhang Y.
Li C.-J.
Eur. J. Org. Chem.
2007,
4654
<A NAME="RY01110ST-5H">5h</A>
Li Z.
Bohle DS.
Li C.-J.
Proc.
Natl. Acad. Sci. U.S.A.
2006,
103:
8928
<A NAME="RY01110ST-5I">5i</A>
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2006,
128:
56
<A NAME="RY01110ST-5J">5j</A>
Li Z.
Li C.-J.
Eur. J. Org. Chem.
2005,
3173
<A NAME="RY01110ST-5K">5k</A>
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2005,
127:
6968
<A NAME="RY01110ST-5L">5l</A>
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2005,
127:
3672
<A NAME="RY01110ST-5M">5m</A>
Li Z.
Li C.-J.
Org. Lett.
2004,
6:
4997
<A NAME="RY01110ST-5N">5n</A>
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2004,
126:
11810
<A NAME="RY01110ST-5O">5o</A>
Baslé O.
Li C.-J.
Green Chem.
2007,
9:
1047
<A NAME="RY01110ST-5P">5p</A>
Baslé O.
Li C.-J.
Chem. Commun.
2009,
4124
For examples, see:
<A NAME="RY01110ST-6A">6a</A>
Sud A.
Sureshkumar D.
Klussmann M.
Chem.
Commun.
2009,
3169
<A NAME="RY01110ST-6B">6b</A>
Shen Y.
Li M.
Wang S.
Zhan T.
Tan Z.
Guo C.-C.
Chem. Commun.
2009,
953
<A NAME="RY01110ST-6C">6c</A>
Jin J.
Li Y.
Wang Z.-J.
Qian W.-X.
Bao W.-L.
Eur. J.
Org. Chem.
2010,
1235
<A NAME="RY01110ST-6D">6d</A>
Maheswari CU.
Kumar GS.
Venkateshwar M.
Kumar RA.
Kantam ML.
Reddy KR.
Adv.
Synth. Catal.
2010,
352:
341
<A NAME="RY01110ST-6E">6e</A>
Cai G.
Fu Y.
Li Y.
Wan X.
Shi Z.
J. Am. Chem.
Soc.
2007,
129:
7666
<A NAME="RY01110ST-6F">6f</A>
Stuart DR.
Fagnou K.
Science
2007,
316:
1172
<A NAME="RY01110ST-6G">6g</A>
Dwight TA.
Rue NR.
Charyk D.
Josselyn R.
DeBoef B.
Org. Lett.
2007,
9:
3137
<A NAME="RY01110ST-6H">6h</A>
Hull KL.
Sanford MS.
J.
Am. Chem. Soc.
2007,
129:
11904
<A NAME="RY01110ST-6I">6i</A>
Xia J.-B.
You S.-L.
Organometallics
2007,
26:
4869
<A NAME="RY01110ST-6J">6j</A>
Yu A.
Gu Z.
Chen D.
He W.
Tan P.
Xiang J.
Catal.
Commun.
2009,
11:
162
<A NAME="RY01110ST-6K">6k</A>
Li Y.-Z.
Li B.-J.
Lu X.-Y.
Lin S.
Shi Z.-J.
Angew. Chem.
Int. Ed.
2009,
48:
3817
<A NAME="RY01110ST-6L">6l</A>
Anaya de Parrodi C.
Walsh PJ.
Angew.
Chem. Int. Ed.
2009,
48:
4679
<A NAME="RY01110ST-6M">6m</A>
Li B.-J.
Tian S.-L.
Fang Z.
Shi
Z.-J.
Angew. Chem. Int. Ed.
2008,
47:
1115
<A NAME="RY01110ST-6N">6n</A>
Catino AJ.
Nichols JM.
Nettles BJ.
Doyle MP.
J.
Am. Chem. Soc.
2006,
128:
5648
<A NAME="RY01110ST-6O">6o</A>
Murahashi S.-I.
Nakae T.
Terai H.
Komiya N.
J. Am. Chem. Soc.
2008,
130:
11005
<A NAME="RY01110ST-6P">6p</A>
Tsang AS.-K.
Todd MH.
Tetrahedron
Lett.
2009,
50:
1199
<A NAME="RY01110ST-6Q">6q</A>
Condie AG.
González-Gómez JC.
Stephenson CRJ.
J.
Am. Chem. Soc.
2010,
132:
1464
For examples, see:
<A NAME="RY01110ST-7A">7a</A>
Latham AH.
Williams ME.
Acc. Chem.
Res.
2008,
41:
411
<A NAME="RY01110ST-7B">7b</A>
Laurent S.
Forge D.
Port M.
Roch A.
Robic C.
Vander Elst L.
Muller RN.
Chem.
Rev.
2008,
108:
2064
<A NAME="RY01110ST-7C">7c</A>
Sun S.
Zeng H.
J. Am. Chem. Soc.
2002,
124:
8204
For selected reviews on Fe catalysis, see:
<A NAME="RY01110ST-7D">7d</A>
Bolm C.
Legros J.
Le Paih J.
Zani L.
Chem. Rev.
2004,
104:
6217
<A NAME="RY01110ST-7E">7e</A>
Sarhan AAO.
Bolm C.
Chem.
Soc. Rev.
2009,
38:
2730
<A NAME="RY01110ST-7F">7f</A>
Morris RH.
Chem. Soc. Rev.
2009,
38:
2282
<A NAME="RY01110ST-7G">7g</A>
Cheng ZY.
Li YZ.
Chem. Rev.
2007,
107:
748
<A NAME="RY01110ST-7H">7h</A>
Sherry BD.
Fürstner A.
Acc. Chem.
Res.
2008,
41:
1500
<A NAME="RY01110ST-8">8</A>
Guin D.
Baruwati B.
Manorama SV.
Org.
Lett.
2007,
9:
1419
For examples, see:
<A NAME="RY01110ST-9A">9a</A>
Polshettiwar V.
Baruwati B.
Varma RS.
Chem.
Commun.
2009,
1837
<A NAME="RY01110ST-9B">9b</A>
Luo S.
Zheng X.
Xu H.
Mi X.
Zhang L.
Cheng J.-P.
Adv. Synth.
Catal.
2007,
349:
2431
<A NAME="RY01110ST-9C">9c</A>
Polshettiwar V.
Baruwati B.
Varma RS.
Green
Chem.
2009,
11:
127
<A NAME="RY01110ST-9D">9d</A>
Kotani M.
Koike T.
Yamaguchi K.
Mizuno N.
Green Chem.
2006,
8:
735
<A NAME="RY01110ST-9E">9e</A>
Zhang D.-H.
Li G.-D.
Lia J.-X.
Chen J.-S.
Chem. Commun.
2008,
3414
<A NAME="RY01110ST-9F">9f</A>
Kawamura M.
Sato K.
Chem. Commun.
2006,
4718
<A NAME="RY01110ST-9G">9g</A>
Kawamura M.
Sato K.
Chem. Commun.
2007,
3404
<A NAME="RY01110ST-9H">9h</A>
Hu A.
Yee GT.
Lin W.
J.
Am. Chem. Soc.
2005,
127:
12486
<A NAME="RY01110ST-9I">9i</A>
Chouhan G.
Wang D.
Alper H.
Chem. Commun.
2007,
4809
<A NAME="RY01110ST-9J">9j</A>
Abu-Reziq R.
Wang D.
Post M.
Alper H.
Adv. Synth. Catal.
2007,
349:
2145
<A NAME="RY01110ST-9K">9k</A>
Polshettiwar V.
Varma RS.
Chem. Eur. J.
2009,
15:
1582
<A NAME="RY01110ST-9L">9l</A>
Ge J.
Zhang Q.
Zhang T.
Yin Y.
Angew. Chem. Int. Ed.
2008,
47:
8924
<A NAME="RY01110ST-10">10</A>
Zeng T.
Chen W.-W.
Cirtiu CM.
Moores A.
Song G.
Li C.-J.
Green Chem.
2010,
12:
570
<A NAME="RY01110ST-11A">11a</A>
Wu X.-J.
Jiang R.
Wu B.
Su X.-M.
Xu X.-P.
Ji
S.-J.
Adv. Synth. Catal.
2009,
351:
3150
<A NAME="RY01110ST-11B">11b</A>
Sreedhar B.
Kumar AS.
Reddy PS.
Tetrahedron
Lett.
2010,
51:
1891
<A NAME="RY01110ST-12A">12a</A>
Buchwald SL.
Bolm C.
Angew.
Chem. Int. Ed.
2009,
48:
5586
<A NAME="RY01110ST-12B">12b</A>
Larsson P.-F.
Correa A.
Carril M.
Norrby P.-O.
Bolm C.
Angew.
Chem. Int. Ed.
2009,
48:
5691
<A NAME="RY01110ST-13">13</A>
The leaching of Fe residue in the
resulting crude material was detected by Thermo Jarrell Ash ICP-AES.
No obvious Fe leaching was detected (below detecting limit).
<A NAME="RY01110ST-14">14</A>
Evans DA.
Seidel D.
Rueping M.
Lam HW.
Shaw
JT.
Downey CW.
J.
Am. Chem. Soc.
2003,
125:
12692
<A NAME="RY01110ST-15">15</A>
Experimental Procedure
Fe3O4 [<50
nm particle size (TEM)], Fe2O3 (<50
nm particle size) and other reagents were purchased from Sigma-Aldrich and
used without further purification. 2-Aryl-1,2,3,4-tetrahydroisoquinolines
were prepared by the literature method.¹6 To
a reaction tube charged with a magnetic stir bar and Fe3O4 nanoparticles
(0.02 mmol, 10 mol%), 1,2,3,4-tetrahydroisoquinoline derivatives
(0.2 mmol), and nitroalkane or acetone (0.5 mL) were added. Then
the tube was filled up with molecular oxygen and stoppered. The reaction
mixture was stirred at 100 ˚C (temperature of
oil bath) for 24 h. The Fe3O4 nanoparticles
were adsorbed on the magnetic stirring bar when the stirring was
stopped. After cooled to r.t., the reaction solution was filtered
through Celite in a pipette eluting with EtOAc. The volatile was removed
in vacuo, and the residue was purified by column chromatography
on silica gel (eluent: hexane-EtOAc = 5:1) to
give the corresponding product. Fe3O4 nanoparticles
were washed with EtOAc, air-dried, and used directly for the next round
of reaction without further purification.
2-(3-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (1e)
White
solid. Isolated by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.7). ¹H
NMR (400 MHz): δ = 7.26-7.15 (m, 5 H),
6.62-6.60 (m, 1 H), 6.53-6.52 (m, 1 H), 6.41-6.39
(m, 1 H), 4.42 (s, 2 H), 3.82 (s, 3 H), 3.57 (t, J = 5.6
Hz, 2 H), 2.99 (t, J = 6.0
Hz, 2 H) ppm. ¹³C NMR (100 MHz): δ = 160.8,
151.9. 134.9, 134.5, 130.0, 128.5, 126.6, 126.4, 126.1, 108.0, 103.3,
101.5, 55.2, 50.6, 46.4, 29.2 ppm. HRMS (APCI): m/z calcd
for C16H18NO [M + 1]+: 240.1383;
found: 240.1381.
2-(3-Methoxyphenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline
(3i)
Isolated by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4).
Light yellow oil. ¹H NMR (400 MHz): δ = 7.28-7.17
(m, 4 H), 7.14-7.12 (m, 1 H), 6.60 (dd, J = 8.4,
2.4 Hz, 1 H), 6.54 (m, 1 H), 6.42 (dd, J = 8.0,
2.0 Hz, 1 H), 5.54 (dd, J = 7.2,
6.8 Hz, 1 H), 4.87 (dd, J = 12.0,
7.2 Hz, 1 H), 4.55 (dd, J = 11.6,
6.8 Hz, 1 H), 3.80 (s, 3 H), 3.66-3.58 (m, 2 H), 3.00 (ddd, J = 16.4,
8.8, 6.4 Hz, 1 H), 2.68 (dt, J = 16.4,
5.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz): δ = 160.9, 149.7,
135.2, 132.9, 130.2, 129.2, 128.2, 127.0, 126.7, 107.5, 104.0, 101.4,
78.8, 58.3, 55.2, 42.1, 26.6 ppm. HRMS (APCI): m/z calcd
for C17H19N2O3 [M + 1]+:
299.1390; found: 299.1391.
2-(3-Methoxyphenyl)-1-(1-nitroethyl)-1,2,3,4-tetrahydroisoquinoline
(3j)
The ratio of isolated diastereomers is 1.7. Isolated
by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4). Light
yellow oil.
Major isomer: ¹H NMR (400
MHz): δ = 5.05 (dq, J = 14.8, 6.4
Hz, 1 H), 3.79 (s, 3 H), 1.55 (d, J = 6.4
Hz, 3 H) ppm. ¹³C NMR (100 MHz): δ = 160.7,
150.2, 134.7, 131.9, 130.0, 128.7, 128.2, 126.6, 107.9, 104.0, 101.8,
85.4, 62.8, 55.2, 42.7, 26.5, 16.3 ppm.
Minor isomer: ¹H
NMR (400 MHz): δ = 4.88 (dq, J = 14.8, 6.4
Hz, 1 H), 3.82 (s, 3 H), 1.71 (d, J = 6.8
Hz, 3 H) ppm. ¹³C NMR (100 MHz): δ = 160.8,
150.5, 135.6, 133.8, 130.1, 129.1, 128.3, 127.3, 107.2, 103.1, 101.1,
88.9, 61.2, 55.2, 43.5, 26.9, 17.5 ppm.
Other overlapped
peaks: ¹H NMR (400 MHz): δ = 7.27-7.08 (m),
7.01-7.00 (m), 6.62-6.52 (m), 6.40-6.37
(m), 5.25-5.24 (m), 3.85-3.83 (m), 3.58-3.52
(m), 3.52-3.04 (m), 2.96-2.86 (m) ppm. ¹³C
NMR (100 MHz): δ = 126.2 ppm. HRMS (APCI): m/z calcd for C18H21N2O3 [M + 1]+: 313.1547;
found: 313.1549.
2-(3-Methoxyphenyl)-1-(1-nitropropyl)-1,2,3,4-tetrahydroisoquinoline
(3k)
The ratio of isolated diastereomers is 1.6. Isolated
by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4). Light
yellow oil.
Major isomer: ¹H NMR (400
MHz): δ = 5.12 (d, J = 9.6
Hz, 1 H), 4.86 (m, 1 H), 3.77 (s, 3 H) ppm. ¹³C
NMR (100 MHz): δ = 160.5, 150.3, 135.5, 133.8,
130.1, 129.3, 128.5, 128.2, 125.9, 108.3, 103.9, 102.2, 92.9, 62.2,
55.2, 42.3, 25.8, 24.5 ppm.
Minor isomer: ¹H
NMR (400 MHz): δ = 5.22 (d, J = 9.2
Hz, 1 H), 4.67 (m, 1 H), 3.81 (s, 3 H) ppm. ¹³C
NMR (100 MHz): δ = 160.7, 150.3, 134.6, 132.1,
129.8, 128.6, 128.2, 127.2, 126.6, 106.8, 102.8, 100.8, 96.1, 60.7,
55.1, 43.5, 26.9, 25.0 ppm.
Other overlapped peaks: ¹H
NMR (400 MHz): δ = 7.26-7.08 (m), 7.01-7.18
(m), 7.00-6.98 (m), 6.62-6.52 (m), 6.40-6.35
(m), 3.87-3.47 (m), 3.12-3.06 (m), 2.93-2.85
(m), 2.26-2.06 (m), 1.86-1.78 (m), 0.96-0.92
(m) ppm. ¹³C NMR (100 MHz): δ = 10.6
ppm. HRMS (APCI): m/z calcd
for C19H23N2O3 [M + 1]+:
327.1703; found: 327.1703.
<A NAME="RY01110ST-16">16</A>
Kwong FY.
Klapars A.
Buchwald SL.
Org.
Lett.
2002,
4:
581