RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245868
© Georg Thieme Verlag KG Stuttgart · New York
Die Transplantation des kornealen Endothels – Möglichkeiten und Grenzen
Transplantation of Corneal Endothelium – Chances and ChallengesPublikationsverlauf
Eingegangen: 5.8.2010
Angenommen: 22.10.2010
Publikationsdatum:
23. März 2011 (online)

Zusammenfassung
Hintergrund: Die Endothel-Keratoplastik ist ein vielversprechendes Verfahren, welches den Vorteil bietet, z. B. bei Erkrankungen, die ausschließlich das korneale Endothel betreffen, lediglich den posterioren Anteil der Hornhaut zu ersetzen. Dieses Verfahren kann postoperative Astigmatismen und möglicherweise auch Abstoßungen vermeiden helfen. Methoden und Ergebnisse: Das chirurgische Verfahren konnte klinisch an einzelnen Zentren bereits gut etabliert werden. Allerdings zeigen die Publikationen zu dem Thema, dass das Problem des postoperativen Endothelzellverlusts ähnlich gravierend oder z. T. noch problematischer als bei der perforierenden Keratoplastik ist. Während die Verbesserung der chirurgischen Verfahren zur Endothel-Keratoplastik zu einer Reduzierung des Endothelzellverlusts führten, gibt es kaum zellbiologische oder gentechnische Ansätze, um den Endothelverlust von Spenderhornhäuten oder Endothellamellen ganz zu verhindern oder die Endothelzelldichte sogar zu erhöhen. Diskussion: Der Übersichtsartikel beschreibt den klinischen Stand der Endothel-Keratoplastik und beschreibt eigene und weltweite Forschungsansätze, die zukünftig helfen können, den Endothelzellverlust zu vermeiden, wie die Entwicklung geeigneter Gewebekulturbedingungen oder die genetische Manipulation des Hornhautendothels. Weiterhin werden Ansätze aus dem Bereich des Tissue Engineerings beschrieben, welche auf die Entwicklung eines transplantierbaren Endothelzell-Sheets zielen. Schlussfolgerung: Vor dem Hintergrund der begrenzten Verfügbarkeit von Spenderhornhäuten müssen zellbiologische Grundlagen des kornealen Endothels und Ansätze des Tissue Engineerings deutlich mehr in den Fokus der Forschung rücken. Methoden zur Vermeidung von Endothelzellverlusten, aber auch zur Erhöhung der Endothelzelldichte sind notwendig und erfordern interdisziplinäre Forschungsansätze.
Abstract
Background: Endothelial keratoplasty is a promising surgical procedure which may replace penetrating keratoplasty in cases of endothelial cell diseases of the cornea. This method may thereby help to prevent postoperative astigmatism and transplant rejection. Methods and Results: A survey of publications reporting about results after endothelial keratoplasty shows that the main problem of this transplantation technique is a postoperative endothelial cell loss which is comparable to or even higher than that observed in penetrating keratoplasty. Improving surgical techniques led to a reduction of the endothelial cell loss, however, cell-based strategies to prevent postoperative cell loss or to enhance the cell densities of donor corneas or endothelial lamellae are rare. Discussion: This review presents an overview of clinical results after endothelial keratoplasty. Current strategies in the field of cell biology and tissue cultivation of corneal endothelial cells, genetic manipulation of the corneal endothelium and tissue engineering strategies aiming at the production of transplantable endothelial cell sheets are described. Conclusion: The limited availability of donor corneas makes it mandatory to develop methods in the field of tissue engineering in order to improve corneal endothelial cell survival or to increase corneal endothelial cell density, using interdisciplinary approaches.
Schlüsselwörter
Endothel-Keratoplastik - perforierende Keratoplastik - Spenderhornhaut - serumfreie Organkultivierung - genetische Manipulation - Tissue Engineering
Key words
endothelial keratoplasty - penetrating keratoplasty - donor cornea - serum-free organ cultivation - genetic manipulation - tissue engineering
Literatur
- 1
Bourne W M, Kaufman H E.
Specular Microscopy of Human Corneal Endothelium Invivo.
Am J Ophthalmol.
1976;
81
319-323
Reference Ris Wihthout Link
- 2
Waring G Or, Bourne W M, Edelhauser H F et al.
The corneal endothelium. Normal and pathologic structure and function.
Ophthalmology.
1982;
89
531-590
Reference Ris Wihthout Link
- 3
Bohringer D, Bohringer S, Poxleitner K et al.
Long-Term Graft Survival in Penetrating Keratoplasty: The Biexponential Model of Chronic
Endothelial Cell Loss Revisited.
Cornea.
2010;
1113-1117
Reference Ris Wihthout Link
- 4
Lass J H, Sugar A, Benetz B A et al.
Endothelial cell density to predict endothelial graft failure after penetrating keratoplasty.
Arch Ophthalmol.
2010;
128
63-69
Reference Ris Wihthout Link
- 5
Bohringer D, Reinhard T, Spelsberg H et al.
Influencing factors on chronic endothelial cell loss characterised in a homogeneous
group of patients.
Br J Ophthalmol.
2002;
86
35-38
Reference Ris Wihthout Link
- 6
Langenbucher A, Seitz B, Nguyen N X et al.
Corneal endothelial cell loss after nonmechanical penetrating keratoplasty depends
on diagnosis: a regression analysis.
Graefes Arch Clin Exp Ophthalmol.
2002;
240
387-392
Reference Ris Wihthout Link
- 7
Melles G R, Eggink F A, Lander F et al.
A surgical technique for posterior lamellar keratoplasty.
Cornea.
1998;
17
618-626
Reference Ris Wihthout Link
- 8
Poinard C, Tuppin P, Loty B et al.
The French national waiting list for keratoplasty created in 1999: patient registration,
indications, characteristics, and turnover.
J Fr Ophtalmol.
2003;
26
911-919
Reference Ris Wihthout Link
- 9
Williams K A, Muehlberg S M, Lewis R F et al.
Influence of advanced recipient and donor age on the outcome of corneal transplantation.
Australian Corneal Graft Registry.
Br J Ophthalmol.
1997;
81
835-839
Reference Ris Wihthout Link
- 10
Melles G R, Lander F, Beekhuis W H et al.
Posterior lamellar keratoplasty for a case of pseudophakic bullous keratopathy.
Am J Ophthalmol.
1999;
127
340-341
Reference Ris Wihthout Link
- 11
Terry M A.
Deep lamellar endothelial keratoplasty (DLEK): pursuing the ideal goals of endothelial
replacement.
Eye.
2003;
17
982-988
Reference Ris Wihthout Link
- 12
Terry M A, Ousley P J.
Deep lamellar endothelial keratoplasty in the first United States patients: early
clinical results.
Cornea.
2001;
20
239-243
Reference Ris Wihthout Link
- 13
Gorovoy M S.
Descemet-stripping automated endothelial keratoplasty.
Cornea.
2006;
25
886-889
Reference Ris Wihthout Link
- 14
Melles G R, Wijdh R H, Nieuwendaal C P.
A technique to excise the descemet membrane from a recipient cornea (descemetorhexis).
Cornea.
2004;
23
286-288
Reference Ris Wihthout Link
- 15
Price M O, Price Jr F W.
Descemet’s stripping with endothelial keratoplasty: comparative outcomes with microkeratome-dissected
and manually dissected donor tissue.
Ophthalmology.
2006;
113
1936-1942
Reference Ris Wihthout Link
- 16
Terry M A, Ousley P J.
Deep lamellar endothelial keratoplasty visual acuity, astigmatism, and endothelial
survival in a large prospective series.
Ophthalmology.
2005;
112
1541-1548
Reference Ris Wihthout Link
- 17
Fogla R, Padmanabhan P.
Initial results of small incision deep lamellar endothelial keratoplasty (DLEK).
Am J Ophthalmol.
2006;
141
346-351
Reference Ris Wihthout Link
- 18
Fogla R, Padmanabhan P.
Results of deep lamellar keratoplasty using the big-bubble technique in patients with
keratoconus.
Am J Ophthalmol.
2006;
141
254-259
Reference Ris Wihthout Link
- 19
Ousley P J, Terry M A.
Stability of vision, topography, and endothelial cell density from 1 year to 2 years
after deep lamellar endothelial keratoplasty surgery.
Ophthalmology.
2005;
112
50-57
Reference Ris Wihthout Link
- 20
Terry M A, Ousley P J.
Small-incision deep lamellar endothelial keratoplasty (DLEK): six-month results in
the first prospective clinical study.
Cornea.
2005;
24
59-65
Reference Ris Wihthout Link
- 21
Terry M A, Ousley P J, Will B.
A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver
eye histology and topography.
Cornea.
2005;
24
453-459
Reference Ris Wihthout Link
- 22
Terry M A, Ousley P J.
Deep lamellar endothelial keratoplasty: early complications and their management.
Cornea.
2006;
25
37-43
Reference Ris Wihthout Link
- 23
Allan B D, Terry M A, Price Jr F W et al.
Corneal transplant rejection rate and severity after endothelial keratoplasty.
Cornea.
2007;
26
1039-1042
Reference Ris Wihthout Link
- 24
Lombardo M, Lombardo G, Friend D J et al.
Long-term anterior and posterior topographic analysis of the cornea after deep lamellar
endothelial keratoplasty.
Cornea.
2009;
28
408-415
Reference Ris Wihthout Link
- 25
Yoo S H, Kymionis G D, Deobhakta A A et al.
One-year results and anterior segment optical coherence tomography findings of descemet
stripping automated endothelial keratoplasty combined with phacoemulsification.
Arch Ophthalmol.
2008;
126
1052-1055
Reference Ris Wihthout Link
- 26
Lass J H, Gal R L, Dontchev M et al.
Donor age and corneal endothelial cell loss 5 years after successful corneal transplantation.
Specular microscopy ancillary study results.
Ophthalmology.
2008;
115
627-632, e628
Reference Ris Wihthout Link
- 27
Albon J, Tullo A B, Aktar S et al.
Apoptosis in the endothelium of human corneas for transplantation.
Invest Ophthalmol Vis Sci.
2000;
41
2887-2893
Reference Ris Wihthout Link
- 28
Koh S W, Cheng J, Dodson R M et al.
VIP down-regulates the inflammatory potential and promotes survival of dying (neural
crest-derived) corneal endothelial cells ex vivo: necrosis to apoptosis switch and
up-regulation of Bcl-2 and N-cadherin.
J Neurochem.
2009;
109
792-806
Reference Ris Wihthout Link
- 29
Okumura N, Ueno M, Koizumi N et al.
Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor.
Invest Ophthalmol Vis Sci.
2009;
50
3680-3687
Reference Ris Wihthout Link
- 30
Price M O, Price Jr F W.
Endothelial cell loss after descemet stripping with endothelial keratoplasty influencing
factors and 2-year trend.
Ophthalmology.
2008;
115
857-865
Reference Ris Wihthout Link
- 31
Vajpayee R B, Agarwal T, Jhanji V et al.
Modification in descemet-stripping automated endothelial keratoplasty: ”Hitch suture”
technique.
Cornea.
2006;
25
1060-1062
Reference Ris Wihthout Link
- 32
John T.
Use of indocyanine green in deep lamellar endothelial keratoplasty.
J Cataract Refract Surg.
2003;
29
437-443
Reference Ris Wihthout Link
- 33
Koenig S B, Dupps Jr W J, Covert D J et al.
Simple technique to unfold the donor corneal lenticule during Descemet’s stripping
and automated endothelial keratoplasty.
J Cataract Refract Surg.
2007;
33
189-190
Reference Ris Wihthout Link
- 34
Yepes N, Segev F, Hyams M et al.
Five-millimeter-incision deep lamellar endothelial keratoplasty: one-year results.
Cornea.
2007;
26
530-533
Reference Ris Wihthout Link
- 35
Terry M A, Chen E S, Shamie N et al.
Endothelial cell loss after Descemet’s stripping endothelial keratoplasty in a large
prospective series.
Ophthalmology.
2008;
115
488-496, e483
Reference Ris Wihthout Link
- 36
Heidemann D G, Dunn S P, Chow C Y.
Comparison of deep lamellar endothelial keratoplasty and penetrating keratoplasty
in patients with Fuchs endothelial dystrophy.
Cornea.
2008;
27
161-167
Reference Ris Wihthout Link
- 37
Terry M A, Shamie N, Chen E S et al.
Endothelial keratoplasty: the influence of preoperative donor endothelial cell densities
on dislocation, primary graft failure, and 1-year cell counts.
Cornea.
2008;
27
1131-1137
Reference Ris Wihthout Link
- 38
Koenig S B, Covert D J, Dupps Jr W J et al.
Visual acuity, refractive error, and endothelial cell density six months after Descemet
stripping and automated endothelial keratoplasty (DSAEK).
Cornea.
2007;
26
670-674
Reference Ris Wihthout Link
- 39
Nieuwendaal C P, Lapid-Gortzak R, Meulen I J et al.
Posterior lamellar keratoplasty using descemetorhexis and organ-cultured donor corneal
tissue (Melles technique).
Cornea.
2006;
25
933-936
Reference Ris Wihthout Link
- 40
Bourne W M, Hodge D O, Nelson L R.
Corneal endothelium five years after transplantation.
Am J Ophthalmol.
1994;
118
185-196
Reference Ris Wihthout Link
- 41
Chung S H, Kim H K, Kim M S.
Corneal endothelial cell loss after penetrating keratoplasty in relation to preoperative
recipient endothelial cell density.
Ophthalmologica.
2010;
224
194-198
Reference Ris Wihthout Link
- 42
Nguyen N X, Pham H N, Langenbucher van der A et al.
Impact of short-term versus longterm topical steroid treatment on ‘idiopathic’ endothelial
cell loss after normal-risk penetrating keratoplasty.
Acta Ophthalmol Scand.
2007;
85
209-212
Reference Ris Wihthout Link
- 43
Reinhard T, Bohringer D, Enczmann J et al.
HLA class I/II matching and chronic endothelial cell loss in penetrating normal risk
keratoplasty.
Acta Ophthalmol Scand.
2004;
82
13-18
Reference Ris Wihthout Link
- 44
Koizumi N, Sakamoto Y, Okumura N et al.
Cultivated corneal endothelial cell sheet transplantation in a primate model.
Invest Ophthalmol Vis Sci.
2007;
48
4519-4526
Reference Ris Wihthout Link
- 45
Proulx S, Bensaoula T, Nada O et al.
Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized
carrier in the feline model.
Invest Ophthalmol Vis Sci.
2009;
50
2686-2694
Reference Ris Wihthout Link
- 46
Bednarz J, Doubilei V, Wollnik P C et al.
Effect of three different media on serum free culture of donor corneas and isolated
human corneal endothelial cells.
Br J Ophthalmol.
2001;
85
1416-1420
Reference Ris Wihthout Link
- 47
Engelmann K, Böhnke M.
Human corneal endothelial cells in long-term cultures: The influence of conditions
for isolation, selective and normal growth and the extracellular matrix on proliferation
and morphology.
Chibret Int J Ophthalmol.
1990;
7
3-13
Reference Ris Wihthout Link
- 48
Engelmann K, Friedl P.
Optimization of culture conditions for human corneal endothelial cells.
In Vitro Cell Dev Biol.
1989;
25
1065-1072
Reference Ris Wihthout Link
- 49
Engelmann K, Friedl P.
Growth of human corneal endothelial cells in a serum-reduced medium.
Cornea.
1995;
14
62-70
Reference Ris Wihthout Link
- 50
Hempel B, Bednarz J, Engelmann K.
Use of a serum-free medium for long-term storage of human corneas. Influence on endothelial
cell density and corneal metabolism.
Graefes Arch Clin Exp Ophthalmol.
2001;
239
801-805
Reference Ris Wihthout Link
- 51
Møller-Pedersen T, Hartmann U, Ehlers N et al.
Evaluation of potential organ culture media for eye banking using a human corneal
endothelial cell growth assay.
Graefes Arch Clin Exp Ophthalmol.
2001;
239
778
Reference Ris Wihthout Link
- 52
Moller-Pedersen T, Hartmann U, Moller H J et al.
Evaluation of potential organ culture media for eye banking using human donor corneas.
Br J Ophthalmol.
2001;
85
1075-1079
Reference Ris Wihthout Link
- 53
Bednarz J, Weich H A, Rodokanaki-Schrenck von A et al.
Expression of genes coding growth factors and growth factor receptors in differentiated
and dedifferentiated human corneal endothelial cells.
Cornea.
1995;
14
372-381
Reference Ris Wihthout Link
- 54
Rieck P, Oliver L, Engelmann K et al.
The role of exogenous/endogenous basic fibroblast growth factor (FGF2) and transforming
growth factor beta (TGF beta-1) on human corneal endothelial cells proliferation in
vitro.
Exp Cell Res.
1995;
220
36-46
Reference Ris Wihthout Link
- 55
Jäckel T, Knels L, Valtink M et al.
Serum-free SFM corneal organ culture medium but not conventional MEM organ culture
medium protects human corneal endothelial cells from apoptotic and necrotic cell death.
Br J Ophthalmol.
2010;
:in press
Reference Ris Wihthout Link
- 56
Reinhard T, Bohringer D, Huschen D et al.
Chronic endothelial cell loss of the graft after penetrating keratoplasty: influence
of endothelial cell migration from graft to hos].
Klin Monatsbl Augenheilkd.
2002;
219
410-416
Reference Ris Wihthout Link
- 57
Senoo T, Joyce N C.
Cell cycle kinetics in corneal endothelium from old and young donors.
Invest Ophthalmol Vis Sci.
2000;
41
660-667
Reference Ris Wihthout Link
- 58
Bednarz J, Rodokanaki-Schrenck von A, Engelmann K.
Different characteristics of endothelial cells from central and peripheral human cornea
in primary culture and after subculture.
In Vitro Cell Dev Biol Anim.
1998;
34
149-153
Reference Ris Wihthout Link
- 59
Engelmann K, Bohnke M, Friedl P.
Isolation and long-term cultivation of human corneal endothelial cells.
Invest Ophthalmol Vis Sci.
1988;
29
1656-1662
Reference Ris Wihthout Link
- 60
Joyce N C, Zhu C C.
Human corneal endothelial cell proliferation: potential for use in regenerative medicine.
Cornea.
2004;
23
S8-S19
Reference Ris Wihthout Link
- 61
Joyce N C, Meklir B, Joyce S J et al.
Cell cycle protein expression and proliferative status in human corneal cells.
Invest Ophthalmol Vis Sci.
1996;
37
645-655
Reference Ris Wihthout Link
- 62
Joyce N C, Zhu C C, Harris D L.
Relationship among oxidative stress, DNA damage, and proliferative capacity in human
corneal endothelium.
Invest Ophthalmol Vis Sci.
2009;
50
2116-2122
Reference Ris Wihthout Link
- 63
McGowan S L, Edelhauser H F, Pfister R R et al.
Stem cell markers in the human posterior limbus and corneal endothelium of unwounded
and wounded corneas.
Mol Vis.
2007;
13
1984-2000
Reference Ris Wihthout Link
- 64
Whikehart D R, Parikh C H, Vaughn A V et al.
Evidence suggesting the existence of stem cells for the human corneal endothelium.
Mol Vis.
2005;
11
816-824
Reference Ris Wihthout Link
- 65
Alvarado J A, Gospodarowicz D, Greenburg G.
Corneal endothelial replacement. I. In vitro formation of an endothelial monolayer.
Invest Ophthalmol Vis Sci.
1981;
21
300-316
Reference Ris Wihthout Link
- 66
Jumblatt M M, Maurice D M, McCulley J P.
Transplantation of tissue-cultured corneal endothelium.
Invest Ophthalmol Vis Sci.
1978;
17
1135-1141
Reference Ris Wihthout Link
- 67
Maurice D M, McCulley J P, Perlman M M.
Development in use of cultured endothelium in corneal transplantation.
Doc Ophthalmol Proc Ser.
1979;
20
151-153
Reference Ris Wihthout Link
- 68
McCulley J P, Maurice D M, Schwartz B D.
Corneal endothelial transplantation.
Ophthalmology.
1980;
87
194-201
Reference Ris Wihthout Link
- 69
Gospodarowicz D, Greenburg G, Alvarado J.
Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical
implications for human studies.
Proc Natl Acad Sci U S A.
1979;
76
464-468
Reference Ris Wihthout Link
- 70
Gospodarowicz D, Greenburg G, Alvarado J.
Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative
endothelium. The cat as an experimental model.
Arch Ophthalmol.
1979;
97
2163-2169
Reference Ris Wihthout Link
- 71
Gospodarowicz D, Greenburg G.
The coating of bovine and rabbit corneas denuded of their endothelium with bovine
corneal endothelial cells.
Exp Eye Res.
1979;
28
249-265
Reference Ris Wihthout Link
- 72
Schwartz B D, McCulley J P.
Morphology of transplanted corneal endothelium derived from tissue culture.
Invest Ophthalmol Vis Sci.
1981;
20
467-480
Reference Ris Wihthout Link
- 73
Insler M S, Lopez J G.
Extended incubation times improve corneal endothelial cell transplantation success.
Invest Ophthalmol Vis Sci.
1991;
32
1828-1836
Reference Ris Wihthout Link
- 74
Joyce N C, Meklir B, Neufeld A H.
In vitro pharmacologic separation of corneal andothelial migration and spreading responses.
Invest Ophthalmol Vis Sci.
1990;
31
1816-1826
Reference Ris Wihthout Link
- 75
Engelmann K, Drexler D, Bohnke M.
Transplantation of adult human or porcine corneal endothelial cells onto human recipients
in vitro. Part I: Cell culturing and transplantation procedure.
Cornea.
1999;
18
199-206
Reference Ris Wihthout Link
- 76
Engelmann K, Bednarz J, Valtink M.
Prospects for endothelial transplantation.
Exp Eye Res.
2004;
78
573-578
Reference Ris Wihthout Link
- 77
Engelmann K, Drexler D, Draeger J et al.
Endothelial cell transplantation in a model.
Ophthalmologe.
1993;
90
166-170
Reference Ris Wihthout Link
- 78
Engelmann K, Bednarz J, Bohnke M.
Endothelial cell transplantation and growth behavior of the human corneal endothelium.
Ophthalmologe.
1999;
96
555-562
Reference Ris Wihthout Link
- 79
Bohnke M, Eggli P, Engelmann K.
Transplantation of cultured adult human or porcine corneal endothelial cells onto
human recipients in vitro. Part II: Evaluation in the scanning electron microscope.
Cornea.
1999;
18
207-213
Reference Ris Wihthout Link
- 80
Aboalchamat B, Engelmann K, Bohnke M et al.
Morphological and functional analysis of immortalized human corneal endothelial cells
after transplantation.
Exp Eye Res.
1999;
69
547-553
Reference Ris Wihthout Link
- 81
Chen K H, Azar D, Joyce N C.
Transplantation of adult human corneal endothelium ex vivo: a morphologic study.
Cornea.
2001;
20
731-737
Reference Ris Wihthout Link
- 82
Joo C K, Green W R, Pepose J S et al.
Repopulation of denuded murine Descemet’s membrane with life-extended murine corneal
endothelial cells as a model for corneal cell transplantation.
Graefes Arch Clin Exp Ophthalmol.
2000;
238
174-180
Reference Ris Wihthout Link
- 83
Smith A J, Bainbridge J W, Ali R R.
Prospects for retinal gene replacement therapy.
Trends Genet.
2009;
25
156-165
Reference Ris Wihthout Link
- 84
Mohan R R, Sharma A, Netto M V et al.
Gene therapy in the cornea.
Prog Retin Eye Res.
2005;
24
537-559
Reference Ris Wihthout Link
- 85
McAlister J C, Joyce N C, Harris D L et al.
Induction of Replication in Human Corneal Endothelial Cells by E 2F2 Transcription
Factor cDNA Transfer.
Invest Ophthalmol Vis Sci.
2005;
46
3597-3603
Reference Ris Wihthout Link
- 86
Williams K A, Jessup C F, Coster D J.
Gene therapy approaches to prolonging corneal allograft survival.
Expert Opin Biol Ther.
2004;
4
1059-1071
Reference Ris Wihthout Link
- 87
Bednarz J, Teifel M, Friedl P et al.
Immortalization of human corneal endothelial cells using electroporation protocol
optimized for human corneal endothelial and human retinal pigment epithelial cells.
Acta Ophthalmol Scand.
2000;
78
130-136
Reference Ris Wihthout Link
- 88
Collins L, Fabre J W.
A synthetic peptide vector system for optimal gene delivery to corneal endothelium.
J Gene Med.
2004;
6
185-194
Reference Ris Wihthout Link
- 89
Dannowski H, Bednarz J, Reszka R et al.
Lipid-mediated gene transfer of acidic fibroblast growth factor into human corneal
endothelial cells.
Exp Eye Res.
2005;
80
93-101
Reference Ris Wihthout Link
- 90
Shewring L, Collins L, Lightman S L et al.
A nonviral vector system for efficient gene transfer to corneal endothelial cells
via membrane integrins.
Transplantation.
1997;
64
763-769
Reference Ris Wihthout Link
- 91
Tan P H, Manunta M, Ardjomand N et al.
Antibody targeted gene transfer to endothelium.
J Gene Med.
2003;
5
311-323
Reference Ris Wihthout Link
- 92
George A J, Arancibia-Carcamo C V, Awad H M et al.
Gene delivery to the corneal endothelium.
Am J Respir Crit Care Med.
2000;
162
S194-S200
Reference Ris Wihthout Link
- 93
Larkin D F, Oral H B, Ring C J et al.
Adenovirus-mediated gene delivery to the corneal endothelium.
Transplantation.
1996;
61
363-370
Reference Ris Wihthout Link
- 94
Bertelmann E, Ritter T, Vogt K et al.
Efficiency of Cytokine Gene Transfer in Corneal Endothelial Cells and Organ-Cultured
Corneas Mediated by Liposomal Vehicles and Recombinant Adenovirus.
Ophthal Res.
2003;
35
117
Reference Ris Wihthout Link
- 95
Pleyer U, Bertelmann E, Rieck P et al.
Survival of corneal allografts following adenovirus-mediated gene transfer of interleukin-4.
Graefes Arch Clin Exp Ophthalmol.
2000;
238
531
Reference Ris Wihthout Link
- 96
Jessup C F, Brereton H M, Coster D J et al.
In vitro adenovirus mediated gene transfer to the human cornea.
Br J Ophthalmol.
2005;
89
658-661
Reference Ris Wihthout Link
- 97
Bainbridge J WB, Stephens C, Parsley K et al.
In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient
long-term transduction of corneal endothelium and retinal pigment epithelium.
Gene Ther.
2001;
8
1665-1668
Reference Ris Wihthout Link
- 98
Challa P, Luna C, Liton P B et al.
Lentiviral mediated gene delivery to the anterior chamber of rodent eyes.
Mol Vis.
2005;
11
425-430
Reference Ris Wihthout Link
- 99
Parker D GA, Kaufmann C, Brereton H M et al.
Lentivirus-mediated gene transfer to the rat, ovine and human cornea.
Gene Ther.
2007;
14
760-767
Reference Ris Wihthout Link
- 100
Beutelspacher S C, Ardjomand N, Tan P H et al.
Comparison of HIV-1 and EIAV-based lentiviral vectors in corneal transduction.
Exp Eye Res.
2005;
80
787-794
Reference Ris Wihthout Link
- 101
Suh L H, Zhang C, Chuck R S et al.
Cryopreservation and Lentiviral-Mediated Genetic Modification of Human Primary Cultured
Corneal Endothelial Cells.
Invest Ophthalmol Vis Sci.
2007;
48
3056-3061
Reference Ris Wihthout Link
- 102
Derksen T A, Sauter S L, Davidson B L.
Feline immunodeficiency virus vectors. Gene transfer to mouse retina following intravitreal
injection.
J Gene Med.
2002;
4
463-469
Reference Ris Wihthout Link
- 103
Engelmann K, Valtink M, Lindemann D et al.
HMW FGF-2 Mediates Cell Rescue After Retroviral Gene Transfer To Human Corneal Endothelial
Cells.
Investigative Ophthalmology and Visual Science.
2009;
50
ARVO E-Abstract 1732
Reference Ris Wihthout Link
- 104 Valtink M, Lindemann D, Engelmann K et al. Retroviral Gene Transfer To Human Corneal Endothelial Cells: Toxic Side Effect And
Rescue By FGF-2. 2nd ISOCB Meeting San Diego, USA; 2008
Reference Ris Wihthout Link
- 105 Valtink M. Retroviraler Gentransfer in humane corneale Endothelzellen in vitro: Transduktion
mit hFGF-2. Dresden: TU Dresden; 2010: 88
Reference Ris Wihthout Link
- 106
Chen E S, Shamie N, Terry M A et al.
Endothelial keratoplasty: improvement of vision after healthy donor tissue exchange.
Cornea.
2008;
27
279-282
Reference Ris Wihthout Link
- 107
Blake D A, Yu H N, Young D L et al.
Matrix stimulates the proliferation of human corneal endothelial cells in culture.
Invest Ophthalmol Vis Sci.
1997;
38
1119-1129
Reference Ris Wihthout Link
- 108
Amano S.
Transplantation of cultured human corneal endothelial cells.
Cornea.
2003;
22
S66-S74
Reference Ris Wihthout Link
- 109
Ma D HK, Yao J Y, Yeh L K et al.
In vitro antiangiogenic activity in ex vivo expanded human limbocorneal epithelial
cells cultivated on human amniotic membrane.
Invest Ophthalmol Vis Sci.
2004;
45
2586-2595
Reference Ris Wihthout Link
- 110
Ishino Y, Sano Y, Nakamura T et al.
Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation.
Invest Ophthalmol Vis Sci.
2004;
45
800-806
Reference Ris Wihthout Link
- 111
da Silva R M, Mano J F, Reis R L.
Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material
boundaries.
Trends Biotechnol.
2007;
25
577-583
Reference Ris Wihthout Link
- 112
Ide T, Nishida K, Yamato M et al.
Structural characterization of bioengineered human corneal endothelial cell sheets
fabricated on temperature-responsive culture dishes.
Biomaterials.
2006;
27
607-614
Reference Ris Wihthout Link
- 113
Nitschke M, Gramm S, Gotze T et al.
Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal
endothelial cell sheets.
J Biomed Mater Res A.
2007;
80
1003-1010
Reference Ris Wihthout Link
- 114
Gotze T, Valtink M, Nitschke M et al.
Cultivation of an immortalized human corneal endothelial cell population and two distinct
clonal subpopulations on thermo-responsive carriers.
Graefes Arch Clin Exp Ophthalmol.
2008;
246
1575-1583
Reference Ris Wihthout Link
- 115
Hsiue G H, Lai J Y, Chen K H et al.
A Novel Strategy for Corneal Endothelial Reconstruction with a Bioengineered Cell
Sheet.
Transplantation.
2006;
81
473-476
Reference Ris Wihthout Link
- 116
Lai J Y, Li Y T.
Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell
sheet carriers.
Biomacromolecules.
2010;
11
1387-1397
Reference Ris Wihthout Link
- 117
Hadlock T, Singh S, Vacanti J P et al.
Ocular cell monolayers cultured on biodegradable substrates.
Tissue Eng.
1999;
5
187-196
Reference Ris Wihthout Link
- 118
Van Horn D L, Sendele D D, Seideman S et al.
Regenerative capacity of the corneal endothelium in rabbit and cat.
Invest ophthalmol Vis Sci.
1977;
16
597-613
Reference Ris Wihthout Link
- 119
Doillon C J, Watsky M A, Hakim M et al.
A collagen-based scaffold for a tissue engineered human cornea: Physical and physiological
properties.
Int J Artif Organs.
2003;
26
764-773
Reference Ris Wihthout Link
- 120
Orwin E J, Hubel A.
In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte
cells in a native collagen matrix.
Tissue Eng.
2000;
6
307-319
Reference Ris Wihthout Link
- 121
Reichl S, Bednarz J, Muller-Goymann C C.
Human corneal equivalent as cell culture model for in vitro drug permeation studies.
Br J Ophthalmol.
2004;
88
560-565
Reference Ris Wihthout Link
- 122
Reichl S, Döhring S, Bednarz J et al.
Human cornea construct HCC – an alternative for in vitro permeation studies? A comparison
with human donor corneas.
Eur J Pharm Biopharm.
2005;
60
305
Reference Ris Wihthout Link
- 123
Vrana N E, Builles N, Justin V et al.
Development of a Reconstructed Cornea from Collagen-Chondroitin Sulfate Foams and
Human Cell Cultures.
Invest Ophthalmol Vis Sci.
2008;
49
5325-5331
Reference Ris Wihthout Link
- 124
Zorn-Kruppa M, Tykhonova S, Belge G et al.
A human corneal equivalent constructed from SV 40-immortalised corneal cell lines.
Altern Lab Anim.
2005;
33
37-45
Reference Ris Wihthout Link
Prof. Dr. Katrin Engelmann
Augenklinik, Klinikum Chemnitz gGmbH
Flemmingstr. 2
09116 Chemnitz
Telefon: ++ 49/3 71/33 33 32 30
Fax: ++ 49/3 71/33 33 32 23
eMail: k.engelmann@skc.de