Zusammenfassung
Die optische Kohärenztomografie (OCT) ist in den letzten Jahren zu einem wichtigen
diagnostischen Verfahren in der Augenheilkunde geworden. Zusätzlich zu der Ophthalmoskopie
sowie der topografischen Darstellung von Pathologien des Augenhintergrunds mittels
Fluorescein- und Indocyaningrün-Angiografie fügt die OCT als weiteres bildgebendes
Verfahren tomografische Informationen retinaler Strukturen hinzu. Schon die OCT-Geräte
der ersten Generationen (time domain) zeigten dem histologischen Querschnitt der Netzhaut
ähnliche Bilder. Mittels der neuen Geräte der Spectral/Frequency/Fourier-Domain-Generation
können topografische und tomografische Informationen in unterschiedlichem Maße auch
nebeneinander oder kombiniert angezeigt werden, was die Genauigkeit der Lokalisation
dargestellter Strukturen erhöht. Aufgrund der nicht invasiven Methodik ohne Kontakt
zum Patientenauge und den immer kürzer werdenden Aufnahmezeiten mit immer höherer
Bildauflösung ist die OCT zu einem wertvollen Instrument in der modernen anatomisch-strukturellen
Makuladiagnostik geworden. Funktionelle Aussagen sind mittels OCT noch nicht im breiten
Rahmen möglich, erste Ansätze zeigen sich jedoch in der Auswertung struktureller Informationen
aus hochauflösenden Aufnahmen. Im folgenden Artikel soll auf die sich durch den breiten
Gebrauch der OCT eröffnenden Möglichkeiten, aber auch auf die sich zeigenden Grenzen
dieser diagnostischen Technik eingegangen werden.
Abstract
During the last years, optical coherence tomography (OCT) has evolved to an important
diagnostic tool in ophthalmology. In addition to ophthalmoscopy and the topographic
visualisation of pathologies of the posterior part of the eye by fluorescein and indocyanine-green
angiography, OCT adds complementary tomographic information on the retinal structures.
First generation (time domain) OCT machines already generated pictures that resemble
histological cross-sections of the retina. With the new OCTs of the spectral/frequency/Fourier
domain generation, topographic and tomographic information can be presented side-by-side
or in combination, thereby increasing the accuracy of the localisation of the visualised
structures. Because of its non-invasive methodology without contact to the patient’s
eye and the faster acquisition times with increasing resolution, the OCT has become
a valuable instrument in the modern anatomic and structural diagnostics of the macula.
Functional statements are not yet possible in a comprehensive manner, but first steps
have been made with the interpretation of structural information from high-resolution
images. In this paper, the emerging possibilities from a widespread use of the OCT,
as well as the limitations of this diagnostic technique, are discussed.
Schlüsselwörter
optische Kohärenztomografie - Time Domain - Frequency Domain - Retina - Struktur -
Darstellung
Key words
optical coherence tomography - time domain - frequency domain - Retina - structure
- visualisation
Literatur
- 1
Fercher A F, Roth E.
Ophthalmic laser interferometer.
Proc SPIE.
1986;
658
48-51
- 2
Fercher A F, Mengedoht K, Werner W.
Eye length measurement by interferometer with partially coherent light.
Optics Letters.
1988;
13
186-188
- 3
Huang D, Swanson E A, Lin C P et al.
Optical coherence tomography.
Science.
1991;
254 (5035)
1178-1181
- 4
Fercher A F, Hitzenberger C K, Drexler W et al.
In-Vivo Optical Coherence Tomography.
Am J Ophthalmol.
1993;
116 (1)
113-115
- 5
Swanson E A, Izatt J A, Hee M R et al.
In-vivo retinal imaging by optical coherence tomography.
Optics Letters.
1993;
18 (21)
1864-1866
- 6
Fercher A F.
Optical coherence tomography.
J Biomed Opt.
1996;
1
157-173
- 7
Fujimoto J G.
Optical coherence tomography for ultrahigh resolution in vivo imaging.
Nature Biotechnology.
2003;
21 (11)
1361-1367
- 8
Antcliff R J, Stanford M R, Chauhan D S.
Comparison between optical coherence tomography and fundus fluorescein angiography
for the detection of cystoid macular edema in patients with uveitis.
Ophthalmology.
2000;
107 (3)
593-599
- 9
Ozdek S C, Erdinc M A, Gürelik G.
Optical coherence tomographic assessment of diabetic macular edema: comparison with
fluorescein angiographic and clinical findings.
Ophthalmologica.
2005;
219 (2)
86-92
- 10
Krebs I, Ansari-Shahrezaei S, Goll A et al.
Activity of neovascular lesions treated with bevacizumab: comparison between optical
coherence tomography and fluorescein angiography.
Graefes Arch Clin Exp Ophthalmol.
2008;
246 (6)
811-815
- 11
Strauss R W, Scholz F, Ulbig M W.
Artifacts in optical coherence tomography (OCT) imaging of the retina.
Klin Monatsbl Augenheilkd.
2007;
224 (1)
47-51
- 12
Srinivasan V J, Monson B K, Wojtkowski M et al.
Characterization of outer retinal morphology with high-speed, ultra-high-resolution
optical coherence tomography.
Invest Ophthalmol Vis Sci.
2008;
49
1571-1579
- 13
Mori K, Gehlbach P L, Sano A et al.
Comparison of epiretinal membranes of differing pathogenesis using optical coherence
tomography.
Retina.
2004;
24 (1)
57-62
- 14
Koleva-Goergieva D, Sivkova N.
Assessment of serous macular detachment in eyes with diabetic macular edema by use
of spectral-domain optical coherence tomography.
Graefes Arch Clin Exp Ophthalmol.
2009;
247 (11)
1461-1469
- 15
Einwallner E, Ahlers C, Golbaz I et al.
Neovascular age-related macular degeneration under anti-angiogenic therapy: Subretinal
fluid is a relevant prognostic parameter.
Ophthalmologe.
2010;
107 (2)
158-164
- 16
Ahlers C, Golbaz I, Stock G et al.
Time course of morphologic effects on different retinal compartment after ranibizumab
therapy in age-related macular degeneration.
Ophthalmology.
2008;
115 (8)
e39-e46
- 17
Kashani A H, Keane P A, Dustin L et al.
Quantitative subanalysis of cystoid spaces and outer nuclear layer using optical coherence
tomography in age-related macular degeneration.
Invest Ophthalmol Vis Sci.
2009;
50 (7)
3366-3373
- 18
Bolz M, Kriechbaum K, Simader C et al.
Diabetic Retinopathy Research Group Vienna. In vivo retinal morphology after grid
laser treatment in diabetic macular edema.
Ophthalmology.
2010;
117 (3)
538-544
- 19
Barthelmes D, Sutter F K, Gillies M C.
Differential optical densities of intraretinal spaces.
Invest Ophthalmol Vis Sci.
2008;
49 (9)
3529-3534
- 20
Gass J D.
Müller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses
concerning its role in the pathogenesis of macular hole and foveomacular retinoschisis.
Arch Ophthalmol.
1999;
117 (6)
821-823
- 21
Jorge R, Costa R A, Calucci D et al.
Intravitreal bevacizumab (Avastin) associated with the regression of subretinal neovascularization
in idiopathic juxtafoveal retinal telangiectasis.
Graefes Arch Clin Exp Opthalmol.
2007;
245 (7)
1045-1048
- 22
Mavrakanas N, Mendrinos E, Pournaras C J et al.
Intravitreal bevacizumab and ranibizumab for bilateral subretinal neovascularization
secondary to idiopathic juxtafoveal telangiectasia type 2A.
Acta Ophthalmol.
2009;
87 (8)
930-932
- 23
Bolz M, Schmidt-Erfurth U, Deak G et al.
Diabetic Retinopathy Research Group Vienna. Optical coherence tomography hyperreflective
foci: a morphologic sign of lipid extravasation in diabetic macular edema.
Ophthalmology.
2009;
116 (5)
914-920
- 24
Liakopoulos S, Ongchin S, Bansal A et al.
Quantitative optical coherence tomography findings in various subtypes of neovascular
age-related macular degeneration.
Invest Ophthalmol Vis Sci.
2008;
49 (11)
5048-5054
- 25
Park S S, Truong S, Zawadzki R et al.
High resolution Fourier-domain optical coherence tomography of choroidal neovascular
membranes associated with age-related macular degeneration.
Invest Ophthalmol Vis Sci.
[e-pub ahead of print]
- 26
Bolz M, Simander C, Ritter M et al.
Morphological and functional analysis of the loading regimen with intravitreal ranibizumab
in neovascular age-related macular degeneration.
Br J Ophthalmol.
2010;
94 (2)
185-189
- 27
Framme C, Panagakis G, Birngruber R.
Effects on choroidal neovascularization after anti-VEGF upload using intravitreal
ranibizumab, as determined by spectral domain-optical coherence tomography.
Invest Ophthalmo Vis Sci.
2010;
51 (3)
1671-1676
- 28
Neue Aspekte in der Therapie der neuovaskulären altersabhängigen Makuladegeneration:
Kriterien der Wiederbehandlung bei Anti-VEGF-Therapie. Aktuelle Ergänzungsstellungnahme
der Retinologischen Gesellschaft, der Deutschen Ophthalmologischen Gesellschaft und
des Berufsverbandes der Augenärzte Deutschlands e. V. Stand: Dezember 2010.
Klin Monatsbl Augenheilkd.
2011;
228(2)
138-143
- 29
Oishi A, Otani A, Sasahara M et al.
Photoreceptor integrity and visual acuity in cystoid macular oedema associated with
retinitis pigmentosa.
Eye.
2009;
23 (6)
1411-1416
- 30
Ota M, Tsujikawa A, Kita M et al.
Integrity of foveal photoreceptor layer in central retinal vein occlusion.
Retina.
2008;
28
1502-08
- 31
Matsumoto H, Sato T, Kishi S.
Outer nuclear layer thickness at the fovea determines visual outcomes in resolved
central serous chorioretinopathy.
Am J Ophthalmol.
2009;
148 (1)
105-110
- 32
Hayashi H, Yamashiro K, Tsujikawa A et al.
Association between foveal photoreceptor integrity and visual outcome in neovascular
age-related macular degeneration.
Am J Opthalmol.
2009;
148 (1)
83-89
- 33
Sakamoto A, Nishijima K, Kita M et al.
Association between foveal photoreceptor status and visual acuity after resolution
of diabetic macular edema by pars plana vitrectomy.
Graefes Arch Clin Exp Ophthalmol.
2009;
247 (10)
1325-1330
- 34
Suh M H, Seo J M, Park K H et al.
Associations between macular findings by optical coherence tomography and visual outcomes
after epiretinal membrane removal.
Am J Opthalmol.
2009;
147
473-480
- 35
Wakabayashi T, Oshima Y, Fujimoto H et al.
Foveal microstructure and visual acuity after retinal detachment repair.
Opthalmology.
2009;
116
519-528
Dr. Maria Andreea Gamulescu
Augenklinik, Universitätsklinikum Regensburg
Franz-Josef-Strauss-Allee 11
93053 Regensburg
Phone: ++ 49/9 41/9 44 92 01
Fax: ++ 49/9 41/9 44 92 02
Email: agamulescu@web.de