RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245379
© Georg Thieme Verlag KG Stuttgart · New York
Pharmakologische Vitreolyse
Pharmacological VitreolysisPublikationsverlauf
Eingegangen: 3.3.2010
Angenommen: 30.3.2010
Publikationsdatum:
15. September 2010 (online)

Zusammenfassung
Hintergrund: Der Glaskörper hat entscheidenden Einfluss auf die Entwicklung und den Verlauf der meisten vitreoretinalen Erkrankungen, welche heute mittels Vitrektomie behandelt werden. Da die mechanische Vitrektomie unvollständig ist, sucht man nach pharmakologischen, enzymatischen Alternativen, welche die Intervention sicherer und effektiver machen sollen. Methode: Verschiedene Substanzen (Chondroitinase, Dispase, Hyaluronidase, Plasmin, Microplasmin) wurden präklinisch und im Falle von Hyaluronidase und Microplasmin (ThromboGenics Ltd., Dublin, Leuven) auch klinisch untersucht. Die bislang veröffentlichten präklinischen und klinischen Ergebnisse werden berichtet. Resultate: Microplasmin kann dosisabhängig eine komplette hintere Glaskörperabhebung induzieren. Morphologische, immunzytochemische oder funktionelle Netzhautveränderungen finden sich nicht. Die zwei bislang veröffentlichten Phase-II-Studien bestätigen dieses Wirkprofil bei guter Verträglichkeit. Die übrigen getesteten Substanzen scheinen weniger gut zur pharmakologischen Vitreolyse geeignet zu sein, da sie Netzhautschäden induzieren können (Dispase) oder den Glaskörper nur verflüssigen, ohne ihn primär von der Netzhaut abzulösen (Hyaluronidase). Schlussfolgerung: Microplasmin trennt den Glaskörper von der Netzhaut ohne morphologische oder funktionelle Netzhautveränderungen zu induzieren. Die Ergebnisse der klinischen Prüfung lassen erkennen, dass Microplasmin hilfreich sein kann, die Ablösung des Glaskörpers vor oder bei der Vitrektomie zu erleichtern und die Intervention atraumatischer und sicherer zu machen.
Abstract
Background: The vitreous plays an important role in the development and progression of vitreoretinal diseases. Vitrectomy is the treatment modality of choice in these cases. However, mechanical vitrectomy is incomplete. Therefore, alternative strategies have been pursued including pharmacological means such as enzymes. The goal of pharmacological vitreolysis is to make the surgical intervention easier and less traumatic. Methods: Different substances have been investigated, including chondroitinase, dispase, hyaluronidase, plasmin, and microplasmin. Besides preclinical investigations, hyaluronidase and microplasmin (ThromboGenics Ltd., Dublin, Leuven) have been tested clinically. Results from the literature are reported herein. Results: Plasmin and microplasmin are both capable of inducing posterior vitreous detachment (PVD) in a dose- and time-dependent manner. There are no morphological or functional changes of the retina at therapeutic doses. Two phase II studies published to date demonstrate both efficacy and safety. Phase III studies are ongoing, and results are expected during 2010. Other enzymes tested show limitations in that retinal damage may occur (dispase) or liquefaction (hyaluronidase) occurs without cleavage of the vitreous cortex from the retina. Conclusions: Microplasmin induces PVD. Results from clinical trials show that microplasmin helps to detach the vitreous cortex from the retina. This may be advantageous in terms of complete vitreous removal and less traumatic intervention compared to mechanical techniques, such as vitrectomy and peeling of the internal limiting membrane.
Schlüsselwörter
Glaskörper - Pharmakologie - Retina
Key words
pharmacology - retina - vitreous
Literatur
- 1 Sebag J. The vitreous. Structure, function, pathobiology.. New York: Springer Verlag; 1989
MissingFormLabel
- 2
Sebag J.
Vitreous: the resplendent enigma.
Br J Ophthalmol.
2009;
93 (8)
989-991
MissingFormLabel
- 3
Sebag J.
Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease.
Graefes Arch Clin Exp Ophthalmol.
2004;
242 (8)
690-698
MissingFormLabel
- 4
Sebag J.
Vitreoschisis.
Graefes Arch Clin Exp Ophthalmol.
2008;
246 (3)
329-332
MissingFormLabel
- 5
Krebs I et al.
Posterior vitreomacular adhesion: a potential risk factor for exudative age-related
macular degeneration?.
Am J Ophthalmol.
2007;
144 (5)
741-746
MissingFormLabel
- 6
Bhisitkul R B.
Anticipation for enzymatic vitreolysis.
British Journal of Ophthalmology.
2001;
85
1-2
MissingFormLabel
- 7
Sebag J.
Pharmacologic vitreolysis.
Retina.
1998;
18 (1)
1-3
MissingFormLabel
- 8
Sebag J.
Pharmacologic vitreolysis--premise and promise of the first decade.
Retina.
2009;
29 (7)
871-874
MissingFormLabel
- 9
Nasrallah F P et al.
The role of the vitreous in diabetic macular edema.
Ophthalmology.
1988;
95 (10)
1335-1339
MissingFormLabel
- 10
Hikichi T et al.
Association between the short-term natural history of diabetic macular edema and the
vitreomacular relationship in type II diabetes mellitus.
Ophthalmology.
1997;
104 (3)
473-478
MissingFormLabel
- 11
Capeans C et al.
Comparative study of incomplete posterior vitreous detachment as a risk factor for
proliferative vitreoretinopathy.
Graefes Arch Clin Exp Ophthalmol.
1998;
236 (7)
481-485
MissingFormLabel
- 12
Bonnet M.
The development of severe proliferative vitreoretinopathy after retinal detachment
surgery. Grade B: a determining risk factor.
Graefes Arch Clin Exp Ophthalmol.
1988;
226 (3)
201-205
MissingFormLabel
- 13
Tolentino F I, Schepens C L, Freeman H M.
Massive preretinal retraction. A biomicroscopic study.
Arch Ophthalmol.
1967;
78
16-22
MissingFormLabel
- 14
Sebag J.
Diabetic vitreopathy.
Ophthalmology.
1996;
103 (2)
205-206
MissingFormLabel
- 15
Gandorfer A.
[The need for pharmacology in vitreoretinal surgery SOE Lecture 2007].
Klin Monatsbl Augenheilkd.
2007;
224 (12)
900-904
MissingFormLabel
- 16
Gandorfer A.
Objective of Pharmacologic Vitreolysis.
Dev Ophthalmol.
2009;
44
1-6
MissingFormLabel
- 17
Faulborn J, Bowald S.
Microproliferations in proliferative diabetic retinopathy and their relationship to
the vitreous: corresponding light and electron microscopic studies.
Graefes Arch Clin Exp Ophthalmol.
1985;
223 (3)
130-138
MissingFormLabel
- 18
Schwartz S D et al.
Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark
in vitrectomy for diabetic traction retinal detachment.
Ophthalmology.
1996;
103 (2)
323-328
MissingFormLabel
- 19
Johnson M W, Van Newkirk M R, Meyer K A.
Perifoveal vitreous detachment is the primary pathogenic event in idiopathic macular
hole formation.
Arch Ophthalmol.
2001;
119 (2)
215-222
MissingFormLabel
- 20
Gandorfer A et al.
Pathology of the macular hole rim in flat-mounted internal limiting membrane specimens.
Retina.
2009;
29 (8)
1097-105
MissingFormLabel
- 21
Gandorfer A, Rohleder M, Kampik A.
Epiretinal pathology of vitreomacular traction syndrome.
Br J Ophthalmol.
2002;
86 (8)
902-909
MissingFormLabel
- 22
Gandorfer A et al.
Resolution of diabetic macular edema after surgical removal of the posterior hyaloid
and the inner limiting membrane.
Retina.
2000;
20 (2)
126-133
MissingFormLabel
- 23
Gandorfer A et al.
Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular
traction.
Am J Ophthalmol.
2005;
139 (4)
638-652
MissingFormLabel
- 24
Shimada H et al.
Concentration gradient of vascular endothelial growth factor in the vitreous of eyes
with diabetic macular edema.
Invest Ophthalmol Vis Sci.
2009;
50 (6)
2953-2955
MissingFormLabel
- 25
Stefansson E.
Physiology of vitreous surgery.
Graefes Arch Clin Exp Ophthalmol.
2009;
247 (2)
147-163
MissingFormLabel
- 26
Stefansson E, Landers III M B, Wolbarsht M L.
Vitrectomy, lensectomy, and ocular oxygenation.
Retina.
1982;
2 (3)
159-166
MissingFormLabel
- 27
Quiram P A et al.
Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels.
Retina.
2007;
27 (8)
1090-1096
MissingFormLabel
- 28
Goldenberg D T, Trese M T.
Pharmacologic vitreodynamics and molecular flux.
Dev Ophthalmol.
2009;
44
31-36
MissingFormLabel
- 29
Gandorfer A et al.
Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy.
Br J Ophthalmol.
2001;
85 (1)
6-10
MissingFormLabel
- 30
Eckardt C et al.
Removal of the internal limiting membrane in macular holes. Clinical and morphological
findings.
Ophthalmologe.
1997;
94 (8)
545-551
MissingFormLabel
- 31
Haritoglou C et al.
Long-term follow-up after macular hole surgery with internal limiting membrane peeling.
Am J Ophthalmol.
2002;
134 (5)
661-666
MissingFormLabel
- 32
Hageman G S, Russell S R.
Chondroitinase-mediated disinsertion of the primate vitreous body.
Invest Ophthalmol Vis Sci.
1994;
35
1260
MissingFormLabel
- 33
Hikichi T, Kado M, Yoshida A.
Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment
in the rabbit.
Retina.
2000;
20 (2)
195-198
MissingFormLabel
- 34
Sebag J.
Is pharmacologic vitreolysis brewing?.
Retina.
2002;
22 (1)
1-3
MissingFormLabel
- 35
Kuppermann B D et al.
Safety results of two phase III trials of an intravitreous injection of highly purified
ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage.
Am J Ophthalmol.
2005;
140 (4)
585-597
MissingFormLabel
- 36
Kuppermann B D et al.
Pooled efficacy results from two multinational randomized controlled clinical trials
of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase)
for the management of vitreous hemorrhage.
Am J Ophthalmol.
2005;
140 (4)
573-584
MissingFormLabel
- 37
Stenn K S, Link R, Moelmann G.
Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and
type IV collagenase.
J Invest Dermatol.
1989;
93
287-290
MissingFormLabel
- 38
Tezel T H, Del P riore LV, Kaplan H J.
Posterior vitreous detachment with dispase.
Retina.
1998;
18 (1)
7-15
MissingFormLabel
- 39
Oliveira L B et al.
Dispase facilitates posterior vitreous detachment during vitrectomy in young pigs.
Retina.
2001;
21 (4)
324-331
MissingFormLabel
- 40
Jorge R et al.
Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes.
Curr Eye Res.
2003;
26 (2)
107-112
MissingFormLabel
- 41
Verstraeten T C et al.
Pharmacologic induction of posterior vitreous detachment in the rabbit.
Arch Ophthalmol.
1993;
111 (6)
849-854
MissingFormLabel
- 42
Gandorfer A et al.
Vitreoretinal morphology of plasmin-treated human eyes.
Am J Ophthalmol.
2002;
133 (1)
156-159
MissingFormLabel
- 43
Gandorfer A, Ulbig M, Kampik A.
Plasmin-assisted vitrectomy eliminates cortical vitreous remnants.
Eye.
2002;
16 (1)
95-97
MissingFormLabel
- 44
Nagai N et al.
Recombinant human microplasmin: production and potential therapeutic properties.
J Thromb Haemost.
2003;
1 (2)
307-313
MissingFormLabel
- 45
Gandorfer A et al.
Posterior vitreous detachment induced by microplasmin.
Invest Ophthalmol Vis Sci.
2004;
45 (2)
641-647
MissingFormLabel
- 46
Sakuma T et al.
Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit
eyes.
Invest Ophthalmol Vis Sci.
2005;
46 (9)
3295-3299
MissingFormLabel
- 47
Sebag J.
Molecular biology of pharmacologic vitreolysis.
Trans Am Ophthalmol Soc.
2005;
103
473-494
MissingFormLabel
- 48
Sebag J, Ansari R R, Suh K I.
Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients.
Graefes Arch Clin Exp Ophthalmol.
2007;
245 (4)
576-580
MissingFormLabel
- 49
Smet M D et al.
Microplasmin Intravitreal Administration in Patients with Vitreomacular Traction Scheduled
for Vitrectomy The MIVI I Trial.
Ophthalmology.
2009;
116
1349-1355
MissingFormLabel
- 50
Benz M S et al.
A Placebo-Controlled Trial of Microplasmin Intravitreous Injection to Facilitate Posterior
Vitreous Detachment before Vitrectomy.
Ophthalmology.
2010;
117
791-797
MissingFormLabel
- 51
Uemura de A et al.
Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy.
Arch Ophthalmol.
2005;
123 (2)
209-213
MissingFormLabel
- 52
Chen W et al.
Microplasmin degrades fibronectin and laminin at vitreoretinal interface and outer
retina during enzymatic vitrectomy.
Curr Eye Res.
2009;
34 (12)
1057-1064
MissingFormLabel
- 53
Kohno T et al.
Immunofluorescent studies of fibronectin and laminin in the human eye.
Invest Ophthalmol Vis Sci.
1987;
28 (3)
506-514
MissingFormLabel
- 54
Li X, Shi X, Fan J.
Posterior vitreous detachment with plasmin in the isolated human eye.
Graefes Arch Clin Exp Ophthalmol.
2002;
240 (1)
56-62
MissingFormLabel
- 55
Gandorfer A.
Enzymatic vitreous disruption.
Eye.
2008;
22
1273-1277
MissingFormLabel
- 56
Yoshida A, Ishiguro S, Tamai M.
Expression of glial fibrillic acidic protein in rabbit müller cells after lensectomy-vitrectomy.
Invest Ophthalmol Vis Sci.
1993;
34
3154-3160
MissingFormLabel
- 57
Trese M.
Enzymatic-assisted vitrectomy.
Eye.
2002;
16
365-368
MissingFormLabel
- 58
Trese M T, Williams G A, Hartzer M L.
A new approach to stage 3 macular holes.
Ophthalmology.
2000;
107 (8)
1607-1611
MissingFormLabel
- 59
Williams J G et al.
Autologous plasmin enzyme in the surgical management of diabetic retinopathy.
Ophthalmology.
2001;
108 (10)
1902-1905
MissingFormLabel
- 60
Margherio A R et al.
Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes.
Ophthalmology.
1998;
105 (9)
1617-1620
MissingFormLabel
Prof. Dr. Arnd Gandorfer
Augenklinik der Ludwig-Maximilians-Universität München
Mathildenstr. 8
80336 München
Telefon: ++ 49/89/51 60 38 56
Fax: ++ 49/89/51 60 47 78
eMail: arnd.gandorfer@med.uni-muenchen.de