RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219946
Enantioenriched Naphthoquinone Mannich Bases by Organocatalyzed Nucleophilic Additions to in situ Formed Imines
Publikationsverlauf
Publikationsdatum:
25. Mai 2010 (online)

Abstract
Organocatalytic nucleophilic addition of 2-hydroxylnaphthaquinone to imines is reported. This new route can be used to produce enantioenriched Mannich bases with excellent yields and moderate enantioselectivities.
Key words
organocatalysis - enantioselective Mannich reaction - 1,4-addition - α-amidosulfone - naphthoquinone
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- Some late reviews on organocatalysis:
- 1a
Gaunt MJ.Johansson CCC.McNally A.Vo NT. Drug Discovery Today 2007, 12: 8Reference Ris Wihthout Link - 1b
Bertelsen S.Jørgensen KA. Chem. Soc. Rev. 2009, 38: 2178Reference Ris Wihthout Link - 1c
Rios R.Cordova A. Curr. Opin. Drug Discovery Dev. 2009, 12: 824Reference Ris Wihthout Link - 1d
Liu XH.Lin LL.Feng XM. Chem. Commun. 2009, 6145Reference Ris Wihthout Link - 1e
Xu LW.Luo J.Lu YX. Chem. Commun. 2009, 1807Reference Ris Wihthout Link - 1f
Zhang ZG.Schreiner PR. Chem. Soc. Rev. 2009, 38: 1187Reference Ris Wihthout Link - 1g
Connon SJ. Synlett 2009, 354Reference Ris Wihthout Link - 2a
Mase N.Tanaka F.Barbas CF. Angew. Chem. Int. Ed. 2004, 43: 2420Reference Ris Wihthout Link - 2b
Northrup AB.MacMillan DWC. Science 2004, 305: 1752Reference Ris Wihthout Link - 2c
Wang J.Li H.Zu LS.Wang W. Adv. Synth. Catal. 2006, 348: 425Reference Ris Wihthout Link - 2d
Enders D.Seki A. Synlett 2002, 26Reference Ris Wihthout Link - 2e
List B. J. Am. Chem. Soc. 2000, 122: 9336Reference Ris Wihthout Link - 2f
Brochu MP.Brown SP.MacMillan DWC. J. Am. Chem. Soc. 2004, 126: 4108Reference Ris Wihthout Link - 2g
Bertelsen S.Halland SN.Stephan B.Marigo M.Braunton A.Jørgensen KA. Chem. Commun. 2005, 4821Reference Ris Wihthout Link - 2h
Westermann B.Neuhaus C. Angew. Chem. Int. Ed. 2005, 44: 4077Reference Ris Wihthout Link - 2i
Clapham B.Cho CW.Janda KD. J. Org. Chem. 2001, 66: 868Reference Ris Wihthout Link - 3a
Ye J.Dixon DJ.Hynes PS. Chem. Commun. 2005, 4481Reference Ris Wihthout Link - 3b
Chen Y.Tian SK.Deng L. J. Am. Chem. Soc. 2000, 122: 9542Reference Ris Wihthout Link - 4a
Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356Reference Ris Wihthout Link - 4b
Storer RI.Carrera DE.Ni Y.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 84Reference Ris Wihthout Link - 4c
Rueping M.Sugiono E.Azap C.Theissmann T.Bolte M. Org. Lett. 2005, 7: 3781Reference Ris Wihthout Link - 4d
Akiyama T.Morita H.Itoh J.Fuchibe K. Org. Lett. 2005, 7: 2583Reference Ris Wihthout Link - 4e
Wang J.Li H.Yu X.-H.Zu L.-S.Wang W. Org. Lett. 2005, 7: 4293Reference Ris Wihthout Link - 5a
Yoon TP.Jacobsen EN. Angew. Chem. Int. Ed. 2005, 44: 466Reference Ris Wihthout Link - 5b
Okino T.Nakamura S.Furukawa T.Takemoto Y. Org. Lett. 2004, 6: 625Reference Ris Wihthout Link - 5c
Berkessel A.Cleemann F.Mukherjee S.Müller TN.Lex J. Angew. Chem. Int. Ed. 2005, 44: 807Reference Ris Wihthout Link - 5d
Hoashi Y.Okino T.Takemoto Y. Angew. Chem. Int. Ed. 2005, 44: 4032Reference Ris Wihthout Link - 5e
Okino T.Hoashi Y.Furukawa T.Xu X.Takemoto Y. J. Am. Chem. Soc. 2005, 127: 119Reference Ris Wihthout Link - 5f
Berkessel A.Mukherjee S.Mueller TN.Cleemann F.Roland K.Brandenburg M.Neudoerfl JM.Lex J. Org. Biomol. Chem. 2006, 4: 4319Reference Ris Wihthout Link - 6
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672 - 7
Zhou WM.Liu H.Du DM. Org. Lett. 2008, 10: 2817 - 8
Kamei H.Koide T.Kojima T.Hashimoto Y.Hasegawa M. Cancer Biother. Radiopharm. 1998, 13: 185 - 9a
Kayashima T.Mori M.Yoshida H.Mizushina K.Matsubara K. Cancer Lett. 2009, 278: 34Reference Ris Wihthout Link - 9b
Zhao LM.Xiw TP.He YQ.Xu DF.Li SS. Eur. J. Med. Chem. 2009, 1410Reference Ris Wihthout Link - 10a
Bolognesi ML.Lizzi F.Perozzo R.Brun R.Cavalli A. Bioorg. Med. Chem. Lett. 2008, 18: 2272Reference Ris Wihthout Link - 10b
Baramee A.Coppin A.Mortuaire M.Pelinski L.Tomavo S.Brocard J. Bioorg. Med. Chem. 2006, 14: 1294Reference Ris Wihthout Link - 11
Austin JF.Kim SG.Sinz CJ.Xiao WJ.MacMillan DWC. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5482
References and Notes
Under the same set of conditions, an attempt to carry out the reaction with benzaldehyde-derived α-amidosulfone (Cbz protected) and 1 resulted in 90% yield, however, enantioselectivity of the product was only 22%.
13
General Procedure
for Addition of Hydroxynaphthoquinone to in situ Formed Imines
In
a 4 mL process vial α-amidosulfone (0.1 mmol),
2-hydroxy-1,4-naphthoquinone
(1, 0.11 mmol), and catalyst (10 mol%)
were dissolved in solvent (0.5 mL). The reaction was allowed to
stir at r.t. (except where mentioned otherwise) for 24 h. Completion
of the reaction was monitored by TLC after which the reaction mixture
was directly subjected to column chromatography (CH2Cl2-MeOH = 99.5:0.5).
The products were dissolved in freshly distilled THF (4-5
mL), and Et3N (1.1 equiv) was added. After stirring the
reaction mixture at r.t. for 5 min, it was cooled to 0 ˚C
and acetyl chloride (1.2 equiv) was added slowly. The reaction mixture
was stirred at the same temperature for another 30 min after which
the product was filtered and concentrated under reduced pressure. Purification
of the product was done by column chromatog-raphy (n-hexane-EtOAc = 90:10).
The ee values for all the products were determined by HPLC on a
chiral stationary phase [Daicel Chiralpak AD-H, n-hexane-i-PrOH (80:20), flow
rate = 1.0 mL/min, λ = 254
nm].
3-(1-{[(Benzyloxy)carbonyl]amino}hexyl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl
Acetate (5a)
Yellow oil; yield 40.8 mg (91%); [α]D
²0 25.5
(c 0.38, CH2Cl2);
ee 65%. ¹H NMR (300 MHz, CDCl3-d): δ = 0.86 (t, J = 6.60 Hz, 3 H), 1.20-1.46
(m, 5 H), 1.60-1.79 (m, 2 H), 1.80-1.97 (m, 1
H), 2.44 (s, 3 H), 4.96-5.20 (m, 3 H), 5.79 (d, J = 9.54 Hz, 1 H), 7.22-7.40
(m, 5 H), 7.66-7.79 (m, 2 H), 8.00-8.14 (m, 2
H). ¹³C NMR (75 MHz, CDCl3-d): δ = 13.9, 20.4,
22.4, 25.8, 31.3, 34.5, 47.8, 66.9, 126.7, 128.1, 128.5, 130.7,
132.0, 134.1, 134.3, 136.3, 136.5, 150.7, 155.8, 167.8, 177.9, 185.1.
ESI-MS: m/z (%) = 472.5
(100) [M + Na]+. t
R(major) = 8.7 min; t
R(minor) = 14.9
min.
3-(1-{[(Benzyloxy)carbonyl]amino}ethyl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl
Acetate (5b)
Yellow oil; yield 36.2 mg (92%); [α]D
²0 10.8
(c 0.95, CH2Cl2);
ee 42%. ¹H NMR (300 MHz, CDCl3-d): δ = 1.49 (d, J = 6.95 Hz, 3 H), 2.45 (s,
3 H), 4.86-5.36 (m, 3 H), 5.90 (d, J = 9.51
Hz, 1 H), 7.28-7.42 (m, 5 H), 7.67-7.83 (m, 2 H),
8.08 (m, 2 H). ¹³C NMR (75 MHz, CDCl3-d): δ = 20.4, 20.6,
43.6, 66.9, 126.7, 128.1, 128.5, 130.6, 132.0, 134.1, 134.4, 136.2,
137.1, 150.1, 155.5, 167.9, 178.1, 184.9. ESI-MS: m/z (%) = 416.4
(100) [M + Na]+. t
R(major) = 10.9
min; t
R(minor) = 12.9
min.
3-{1-[(
tert
-Butoxycarbonyl)amino]hexyl}-1,4-dioxo-1,4-dihydronaphthalen-2-yl
Acetate (12)
Yellow oil; yield 27.8 mg (67%); [α]D
²0 7.2
(c 0.41, CH2Cl2); ee
33%. ¹H NMR (300 MHz, CDCl3-d): δ = 0.84 (t, J = 6.80 Hz, 3 H), 1.36 (m,
6 H), 1.40 (s, 9 H), 1.36-1.40 (m, 2 H), 2.42 (s, 3 H),
5.05 (m, 1 H), 5.49 (d, J = 9.57
Hz, 1 H), 7.78 (m, 2 H), 8.08 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3-d): δ = 13.9,
20.4, 22.4, 25.8, 28.3, 30.5, 31.3, 34.8, 47.2, 79.6, 126.7, 130.7,
132.0, 134.0, 134.3, 137.0, 150.6, 155.2, 167.8, 178.1. ESI-MS: m/z (%) = 438.4
(100) [M + Na]+. t
R(major) = 4.7 min; t
R(minor) = 6.0 min.
3-(1-{[(4-Methylphenyl)sulfonyl]amino}hexyl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl
Acetate (13)
Yellow oil; yield 41.7 mg (89%); [α]D
²0 -13.7
(c 0.34, CH2Cl2);
ee -31%. ¹H NMR (300 MHz,
CDCl3-d): δ = 0.82-0.92
(m, 3 H), 1.17-1.51 (m, 3 H), 1.55-1.68 (m, 4
H), 1.88 (dt, J = 9.17, 4.59
Hz, 1 H), 1.93 (s, 3 H), 2.43 (s, 3 H), 4.54 (d, J = 7.34
Hz, 1 H), 5.73 (br s, 1 H), 6.86 (d, J = 7.70
Hz, 2 H), 7.55 (d, J = 8.07
Hz, 2 H), 7.67-7.77 (m, 2 H), 7.83-7.91 (m, 1
H), 7.93-8.01 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3-d): δ = 13.9,
20.4, 20.9, 22.3, 25.5, 31.0, 34.8, 50.7, 126.4, 126.6, 127.5, 129.4,
130.3, 131.7, 134.2, 137.1, 143.3, 150.9, 167.5, 176.9. ESI-MS: m/z (%) = 492.3
(100) [M + Na]+. t
R(major) = 11.9
min; t
R(minor) = 16.3
min.