References and Notes
<A NAME="RU02010ST-1">1</A>
Fabiani ME.
Drug
News Perspect
1999,
12:
207
<A NAME="RU02010ST-2A">2a</A>
Friedrick K.
Wallensfels K.
The Chemistry of the Cyano Group
Rappoport Z.
Wiley-Interscience;
New
York:
1970.
<A NAME="RU02010ST-2B">2b</A>
North M.
Comprehensive Organic Functional Group Transformation
Katritzky AR.
Meth-Cohn O.
Rees CW.
Pergamon;
Oxford:
1995.
<A NAME="RU02010ST-2C">2c</A>
Murahashi S.-I.
Synthesis from Nitriles with Retention of the
Cyano Group, In Science of Synthesis
Vol.
19:
Thieme;
Stuttgart:
2004.
p.345-402
<A NAME="RU02010ST-2D">2d</A>
Collier SJ.
Langer P.
Application of Nitriles as Reagents for Organic
Synthesis with Loss of the Nitrile Functionality, In Science of Synthesis
Vol.
19:
Thieme;
Stuttgart:
2004.
p.403-425
<A NAME="RU02010ST-3">3</A>
Comprehensive
Organic Transformations
Larock RC.
VCH Publishers;
New York:
1989.
p.976-993
<A NAME="RU02010ST-4A">4a</A>
Sandmeyer T.
Chem. Ber.
1884,
17:
1633
<A NAME="RU02010ST-4B">4b</A>
Sandmeyer T.
Chem.
Ber.
1884,
17:
2650
<A NAME="RU02010ST-5A">5a</A>
Sharman WM.
Van Lier JE. In
Porphyrin
Handbook
Vol. 15:
Kadish E.
Smith KM.
Guilard R.
Academic Press;
New York:
2003.
p.1
<A NAME="RU02010ST-5B">5b</A>
Weissman SA.
Zewge D.
Chen C.
J.
Org. Chem.
2005,
70:
1508
<A NAME="RU02010ST-5C">5c</A>
Littke A.
Soumeillant M.
Kaltenbach RF.
Cherney RJ.
Tarby CM.
Kiau S.
Org.
Lett.
2007,
9:
1711
<A NAME="RU02010ST-5D">5d</A>
Martin MT.
Liu B.
Cooley BE.
Eaddy
JF.
Tetrahedron
Lett.
2007,
48:
2555
<A NAME="RU02010ST-5E">5e</A>
Nandurkar NS.
Bhanage BM.
Tetrahedron
2008,
64:
3655
<A NAME="RU02010ST-5F">5f</A>
Iqbal Z.
Lyubimtsev A.
Hanack M.
Synlett
2008,
2287
<A NAME="RU02010ST-5G">5g</A>
Chen G.
Weng J.
Zheng Z.
Zhu X.
Cai Y.
Cai J.
Wan Y.
Eur. J. Org. Chem.
2008,
3524
<A NAME="RU02010ST-5H">5h</A>
Schareina T.
Zapf A.
Cotte A.
Müller N.
Beller M.
Synthesis
2008,
3351
<A NAME="RU02010ST-5I">5i</A>
Buono FG.
Chidambaram R.
Mueller RH.
Waltermire RE.
Org.
Lett.
2008,
10:
5325
<A NAME="RU02010ST-5J">5j</A>
Chattopadhyay K.
Dey R.
Ranu BC.
Tetrahedron Lett.
2009,
50:
3164
<A NAME="RU02010ST-5K">5k</A>
Yan G.
Kuang C.
Zhang Y.
Wang J.
Org. Lett.
2010,
12:
1052
<A NAME="RU02010ST-6A">6a</A>
Chen X.
Hao X.-S.
Goodhue CE.
Yu J.-Q.
J.
Am. Chem. Soc.
2006,
128:
6790
<A NAME="RU02010ST-6B">6b</A>
Jia X.
Yang D.
Zhang S.
Cheng J.
Org. Lett.
2009,
11:
4716
<A NAME="RU02010ST-7A">7a</A>
Gerhard L.
Chem. Ber.
1967,
100:
2719
<A NAME="RU02010ST-7B">7b</A>
Lohaus G.
Org.
Synth.
1970,
50:
52
For reviews, see:
<A NAME="RU02010ST-8A">8a</A>
Togo H.
Iida S.
Synlett
2006,
2159
<A NAME="RU02010ST-8B">8b</A>
Togo H.
J.
Synth. Org. Chem.
2008,
66:
652
<A NAME="RU02010ST-9A">9a</A>
Mori N.
Togo H.
Synlett
2004,
880
<A NAME="RU02010ST-9B">9b</A>
Mori N.
Togo H.
Synlett
2005,
1456
<A NAME="RU02010ST-9C">9c</A>
Mori N.
Togo H.
Tetrahedron
2005,
61:
5915
<A NAME="RU02010ST-9D">9d</A>
Ishihara M.
Togo H.
Synlett
2006,
227
<A NAME="RU02010ST-9E">9e</A>
Iida S.
Togo H.
Synlett
2006,
2633
<A NAME="RU02010ST-9F">9f</A>
Ishihara M.
Togo H.
Tetrahedron
2007,
63:
1474
<A NAME="RU02010ST-9G">9g</A>
Iida S.
Togo H.
Tetrahedron
2007,
63:
8274
<A NAME="RU02010ST-9H">9h</A>
Iida S.
Togo H.
Synlett
2007,
407
<A NAME="RU02010ST-9I">9i</A>
Iida S.
Togo H.
Synlett
2008,
1639
<A NAME="RU02010ST-9J">9j</A>
Iida S.
Ohmura R.
Togo H.
Tetrahedron
2009,
65:
6257
<A NAME="RU02010ST-10A">10a</A>
Misono A.
Osa T.
Koda S.
Bull. Chem. Soc. Jpn.
1966,
39:
854
<A NAME="RU02010ST-10B">10b</A>
Talukdar S.
Hsu J.
Chou T.
Fang J.
Tetrahedron Lett.
2001,
42:
1103
<A NAME="RU02010ST-11">11</A>
Ushijima S.
Togo H.
Synlett
2010,
1067
<A NAME="RU02010ST-12">12</A>
Typical Experimental
Procedure for the Conversion of Aromatic Bromides into Aromatic
Nitriles
Butyllithium (1.67 M solution in hexane,
3.3 mL, 5.5 mmol) was added dropwise to a solution of 4-bromotoluene
(855 mg, 5 mmol) in THF (5 mL) at -70 ˚C.
After 30 min, the resulting mixture was warmed and stirred for 5
min at 0 ˚C. Then, DMF (0.43 mL, 5.5 mmol) was
added to the mixture, and the obtained mixture was stirred at 0 ˚C.
After 1 h at the same temperature, aq NH3 (10 mL, 150
mmol) and I2 (1396 mg, 5.5 mmol) were added, and the
obtained mixture was stirred for 2 h at r.t. The reaction mixture
was quenched with sat. aq Na2SO3 (15 mL) and
was extracted with Et2O (3 × 20 mL).
The organic layer was washed with brine and dried over Na2SO4 to
provide 4-methylbenzonitrile in 80% yield. If necessary,
the product was purified by a short column chromatography on silica
gel (hexane-EtOAc = 9:1) to
give pure 4-methylbenzonitrile as a colorless solid.
Most
aromatic nitriles mentioned in this work are commer-cially available
and were identified by comparison with the authentic samples.
4-Methylbenzonitrile
Mp 26-28 ˚C
(commercial, mp 26-28 ˚C). IR: 2227 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.41
(s, 3 H), 7.26 (d, J = 8.1
Hz, 2 H), 7.52 (d, J = 8.1
Hz, 2 H).
3-Methylbenzonitrile
Oil
(commercial). IR: 2229 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.38
(s, 3 H), 7.32-7.47 (m, 4 H).
2-Methylbenzonitrile
Oil
(commercial). IR: 2225 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.54
(s, 3 H), 7.26 (t, J = 7.6
Hz, 1 H), 7.31 (d, J = 7.6
Hz, 1 H), 7.48 (t, J = 7.6
Hz, 1 H), 7.58 (d, J = 7.6 Hz,
1 H).
2,4-Dimethylbenzonitrile
Mp
23-24 ˚C (commercial, mp 23-25 ˚C).
IR: 2221 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.36
(s, 3 H), 2.47 (s, 3 H), 7.05 (d, J = 8.0
Hz, 1 H), 7.10 (s, 1 H) 7.43 (d, J = 8.0
Hz, 1 H).
3,4-Dimethylbenzonitrile
Mp
63-64 ˚C (commercial, mp 64-67 ˚C).
IR: 2224 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.29
(s, 3 H), 2.32 (s, 3 H), 7.21 (d, J = 7.8
Hz, 1 H), 7.39 (d, J = 7.8
Hz, 1 H), 7.41 (s, 1 H).
2,5-Dimethylbenzonitrile
Oil
(commercial). IR: 2227 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.33
(s, 3 H), 2.48 (s, 3 H), 7.18 (d, J = 7.9
Hz, 1 H), 7.27 (d, J = 7.9
Hz, 1 H), 7.36 (s, 1 H).
2,4,6-Trimethylbenzonitrile
Mp
50-51 ˚C (lit.9i mp 54-55 ˚C).
IR: 2218 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.32
(s, 3 H), 2.47 (s, 6 H), 6.92 (s, 2 H).
4-Methoxybenzonitrile
Mp
54-55 ˚C (commercial, mp 57-59 ˚C).
IR: 2216 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.86
(s, 3 H), 6.95 (d, J = 8.9
Hz, 2 H), 7.59 (d, J = 8.9
Hz, 2 H).
2,4-Dimethoxybenzonitrile
Mp
93-94 ˚C (commercial, mp 93-94 ˚C).
IR: 2219 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.86
(s, 3 H), 3.90 (s, 3 H), 6.46 (s, 1 H), 6.51 (d, J = 8.5
Hz, 1 H), 7.48 (d, J = 8.5
Hz, 1 H).
2,4,6-Trimethoxybenzonitrile
Mp
139-140 ˚C (commercial, mp 143-145 ˚C.
IR: 2212 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.86
(s, 3 H), 3.89 (s, 6 H), 6.07 (s, 2 H).
4-(
N
,
N
-Dimethyamino)benzonitrile
Mp
75 ˚C (commercial, mp 75 ˚C).
IR: 2210 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.04
(s, 6 H), 6.64 (d, J = 9.1
Hz, 2 H), 7.47 (d, J = 9.1
Hz, 2 H).
1-Naphthonitrile
Mp
35-36 ˚C (commercial, mp 36-38 ˚C).
IR: 2219 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.49
(t, J = 7.9
Hz, 1 H), 7.59 (t, J = 8.2
Hz, 1 H), 7.67 (t, J = 8.2
Hz, 1 H), 7.89 (d, J = 7.9
Hz, 1 H), 7.91 (d, J = 7.9
Hz, 1 H), 8.05 (d, J = 8.2 Hz,
1 H), 8.22 (d, J = 8.2
Hz, 1 H).
2-Naphthonitrile
Mp
68-70 ˚C (commercial, mp 66-70 ˚C).
IR: 2225 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.58-7.68
(m, 3 H), 7.88-7.93 (m, 3 H), 8.24 (s, 1 H).
4-Cyanobiphenyl
Mp 85-88 ˚C
(commercial, mp 85-87 ˚C). IR: 2225 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.44
(t, J = 7.3
Hz, 1 H), 7.49 (t, J = 7.3
Hz, 2 H), 7.59 (d, J = 7.3
Hz, 2 H), 7.69 (d, J = 8.8
Hz, 2 H), 7.73 (d, J = 8.8
Hz, 2 H).
2-Cyanopyridine
Mp
24-25 ˚C (commercial, mp 24-27 ˚C).
IR: 2236 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.56
(dd, J = 7.8,
4.6 Hz, 1 H), 7.73 (d, J = 7.8
Hz, 1 H), 7.88 (t, J = 7.8
Hz, 1 H), 8.74 (d, J = 4.6
Hz, 1 H).
Typical Experimental Procedure
for the Conversion of Aromatics into Aromatic Nitriles
Butyllithium
(1.67 M solution in hexane, 2.9 mL, 4.8 mmol) was added dropwise
into a solution of 1,3-dimethoxyben-zene (552 mg, 4 mmol) in THF
(5 mL) at 0 ˚C, and the mixture was stirred for
2 h at the same temperature. Then, DMF (0.34 mL, 4.4 mmol) was added
to the mixture, and the obtained mixture was stirred at 0 ˚C.
After 2 h at the same temperature, aq NH3 (8 mL, 120
mmol) and I2 (1117 mg, 4.4 mmol) were added and stirred
for 2 h at r.t. The reaction mixture was quenched with sat. aq Na2SO3 (15
mL) and was extracted with Et2O (3 × 20
mL). The organic layer was washed with brine and dried over Na2SO4 to
provide 2,6-dimethoxybenzonitrile in 91% yield. If necessary,
the product was purified by a short column chromatography on silica
gel (hexane-EtOAc = 3:1) to
give pure 2,6-dimeth-oxybenzonitrile as a colorless solid.
2,6-Dimethoxybenzonitrile
Mp 117-119 ˚C
(commercial, mp 119-123 ˚C). IR: 2220 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.90
(s, 6 H), 6.56 (d, J = 8.5
Hz, 2 H), 7.44 (t, J = 8.5
Hz, 1 H).
2-Methoxybenzonitrile
Oil
(commercial). IR: 2230 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.91
(s, 3 H), 7.02-6.97 (m, 2 H), 7.59-7.52 (m, 2
H).
2,5-Dimethoxybenzonitrile
Mp
79-82 ˚C (commercial, mp 81-85 ˚C).
IR: 2224 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.78
(s, 3 H), 3.89 (s, 3 H), 6.91 (d, J = 9.0
Hz, 1 H), 7.05-7.11 (m, 2 H).
2,3-Dimethoxybenzonitrile
Mp
41-42 ˚C (commercial, mp 43-46 ˚C).
IR: 2228 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.89
(s, 3 H), 4.03 (s, 3 H), 7.07-7.16 (m, 3 H).
2-Cyano-
N
-methylindole
Mp 70-75 ˚C.
IR: 2223 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.91
(s, 3 H), 7.16 (s, 1 H), 7.21 (t, J = 6.8,
1 H), 7.34-7.44 (m, 2 H), 7.66 (d, J = 8.2
Hz, 1 H).
N
-Tosylindole-2-carbonitrile
Mp
160-161 ˚C (lit.¹³ mp
160-162 ˚C). IR: 2227 cm-¹. ¹H NMR
(500 MHz, CDCl3): δ = 2.37
(s, 3 H), 7.27 (d, J = 8.2 Hz,
1 H), 7.32 (d, J = 7.2
Hz, 1 H) 7.36 (s, 1 H), 7.52 (t, J = 7.2
Hz, 1 H), 7.58 (d, J = 8.2
Hz, 1 H), 7.90 (d, J = 8.4 Hz,
2 H), 8.21 (d, J = 8.4
Hz, 1 H).
2,4,6-Trimethoxybenzonitrile
Mp
139-140 ˚C (commercial, mp 143-145 ˚C).
IR: 2212 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 3.86
(s, 3 H), 3.89 (s, 6 H), 6.07 (s, 2 H).
Benzofuran-2-carbonitrile
Oil
(lit.¹4). IR: 2227 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.36
(t, J = 7.5
Hz, 1 H), 7.46 (s, 1 H), 7.49-7.58 (m, 2 H), 7.68 (d, J = 7.9 Hz,
1 H).
Benzothiophene-2-carbonitrile
Oil
(commercial, mp 24-28 ˚C). IR: 2217 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.43
(t, J = 7.6
Hz, 1 H), 7.48 (t, J = 7.6
Hz, 1 H), 7.77-7.85 (m, 3 H).
5-Decylfuran-2-carbonitrile
Oil.
IR: 2229 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 0.88
(t, J = 7.0
Hz, 3 H), 1.21-1.38 (m, 14 H), 1.65 (quint, J = 7.1 Hz,
2 H), 2.66 (t, J = 7.1
Hz, 2 H), 6.11 (d, J = 3.4
Hz, 1 H), 6.99 (d, J = 3.4
Hz, 1 H). HRMS-FAB: m/z calcd
for C15H24NO [M + H]+:
234.1858; found: 234.1861.
<A NAME="RU02010ST-13">13</A>
Hughes TV.
Cava MP.
J. Org. Chem.
1999,
64:
313
<A NAME="RU02010ST-14">14</A>
Singh MK.
Lakshman MK.
J. Org. Chem.
2009,
74:
3079