Synlett 2010(9): 1402-1406  
DOI: 10.1055/s-0029-1219817
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Oxidation of Alkynes in Aqueous Media Catalyzed by Diphenyl Diselenide

Stefano Santoro, Benedetta Battistelli, Blerina Gjoka, Chun-wing Steven Si, Lorenzo Testaferri, Marcello Tiecco, Claudio Santi*
Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
Fax: +39(075)5855116; e-Mail: santi@unipg.it;
Further Information

Publication History

Received 4 March 2010
Publication Date:
13 April 2010 (online)

Abstract

In this communication we propose a convenient methodology to effect the oxidation of alkynes using ammonium persulfate and diphenyl diselenide as catalyst. The reactions effected in aqueous media lead to 1,2-unprotected dicarbonyl derivatives or to hemiacetals starting from terminal alkynes.

    References and Notes

  • 1a Santi C. Tiecco M. Testaferri L. Tomassini C. Santoro S. Bizzoca G. Phosphorus, Sulfur Silicon Relat. Elem.  2008,  183:  956 
  • 1b Santoro S. Santi C. Sabatini M. Testaferri L. Tiecco M. Adv. Synth. Catal.  2008,  350:  2881 
  • 2 Freudendahl DM. Santoro S. Shahzad SA. Santi C. Wirth T. Angew. Chem. Int. Ed.  2009,  48:  8409 
  • 3 Tiecco M. Testaferri L. Tingoli M. Chianelli D. Bartoli D. J. Org. Chem.  1991,  56:  4529 
  • 4a Hillis LR. Ronald RC. J. Org. Chem.  1985,  50:  470 
  • 4b Mattay J. Runsik J. J. Org. Chem.  1985,  50:  2815 
  • 5 Zuliani V. Cocconcelli G. Fantini M. Ghiron C. Rivara M. J. Org. Chem.  2007,  72:  4551 ; and references cited therein
  • 6 Ahmad S. Iqbal J. J. Chem. Soc., Chem. Commun.  1987,  692 
  • 7a Wolt S. Ingold CF. J. Am. Chem. Soc.  1983,  105:  7755 
  • 7b Gopal H. Gordon AJ. Tetrahedron Lett.  1971,  12:  2941 
  • 8 Girard P. Counffignal R. Kagan HB. Tetrahedron Lett.  1981,  22:  3959 
  • 9 Yamashita M. Suemitsu RJ. J. Chem. Soc., Chem. Commun.  1977,  691 
  • 10 Iwahama T. Sakaguchi S. Nishiyama Y. Ishii Y. Tetrahedron Lett.  1995,  36:  1523 
  • 11a Schroder M. Chem. Rev.  1980,  80:  187 
  • 11b Muller P. Godey J. Helv. Chim. Acta  1981,  64:  2531 
  • 11c Chang C.-L. Kumar MP. Liu R.-S. J. Org. Chem.  2004,  69:  2793 
  • 11d Kashimura S. Murai Y. Washika C. Yoshihara D. Kataoka Y. Murase H. Shono T. Tetrahedron Lett.  1997,  38:  6717 
  • 11e Crich D. Zou Y. J. Org. Chem.  2005,  70:  3309 
  • 11f Srinivasan NS. Lee DG. J. Org. Chem.  1979,  44:  1574 
  • 11g Dayan S. Ben-David I. Rozen S. J. Org. Chem.  2000,  65:  8816 
  • 12a Santi C. Santoro S. Battistelli B. Testaferri L. Tiecco M. Eur. J. Org. Chem.  2008,  5387 
  • 12b Santoro S. Battistelli B. Testaferri L. Tiecco M. Santi C. Eur. J. Org. Chem.  2009,  4921 
  • 13 Fix JA, and Pogany SA. inventors; US  4, 440,740. 
14

In a typical procedure (PhSe)2 (0.1 mmol) and (NH4)2S2O8 (3 mmol) were suspended in H2O (5 mL) (or in a 3:1 mixure of H2O-MeCN) and heated at 60 ˚C for 15 min. To the resulting red-orange reaction mixture alkyne (1a-m, 1 mmol) was added and stirred for the time reported in Tables  [²] and  [³] . After the usual workup the crude was purified by a silica gel chromatography using CH2Cl2 or a mixture 1:99 R²OH-CH2Cl2 as eluent.
All the compounds, after purification, were fully characterized by GC-MS, ¹H NMR, and ¹³C NMR experiments. Physical and spectral data for the products not previously described in literature are reported below.
2-Hydroxy-2-isopropoxy-1-phenylethanone (9g) Oil. ¹H NMR (400 MHz, CDCl3): δ = 8.07 (d, 2 H, J = 7.5 Hz), 7.64 (t, 1 H, J = 7.5 Hz), 7.51 (t, 2 H, J = 7.5 Hz), 5.79 (d, 1 H, J = 8.0 Hz), 4.57 (d, 1 H, J = 8.0 Hz), 4.27 (sept, 1 H, J = 6.4 Hz), 1.35 (d, 3 H, J = 6.4 Hz), 1.28 (d, 3 H, J = 6.4 Hz) ppm. ¹³C NMR (100.62 MHz, CDCl3): δ = 194.5, 134.9, 133.4, 130.0, 129.1, 90.9, 71.0, 24.2, 22.2 ppm. GC-MS: m/z (relative intensity) = 192 (1), 121 (51), 105 (100), 77 (58), 51 (29). 1-Hydroxy-1-methoxydecan-2-one (8h) Oil. ¹H NMR (400 MHz, CDCl3): δ = 4.86 (d, 1 H, J = 9.2 Hz), 4.10 (d, 1 H, J = 9.0 Hz), 3.50 (s, 3 H), 2.78-2.71 (m, 1 H), 2.57-2.45 (m, 1 H), 1.71-1.62 (m, 2 H), 1.30-1.28 (m, 10 H), 0.89 (t, 3 H, J = 6.0 Hz) ppm. ¹³C NMR (100.62 MHz, CDCl3): δ = 206.1, 95.5, 55.5, 37.9, 35.5, 31.7, 29.2, 23.0, 14.0 ppm. GC-MS: m/z (relative intensity) = 202 (1), 141 (100), 123 (33) 71 (94), 57 (94).
1-Hydroxy-1-methoxyhexan-2-one (8i) Oil. ¹H NMR (400 MHz, CDCl3): δ = 4.81 (d, 1 H, J = 9.0 Hz), 4.09 (d, 1 H, J = 9.0 Hz) 3.50 (s, 3 H), 2.78-2.65 (m, 1 H), 2.65-2.43 (m, 1 H), 1.65-1.53 (m, 2 H), 1.43-1.23 (m, 2 H), 0.90 (t, 3 H, J = 7.01 Hz) ppm. ¹³C NMR (100.6 MHz, CDCl3): δ = 206.1, 95.5, 55.5, 37.5, 25.1, 22.2, 13.7 ppm. GC-MS: m/z (relative intensity) = 146 (13), 119 (10), 97 (36), 85 (60), 77 (50), 70 (55), 57 (100).
2-Hydroxy-2-methoxy-1-(4′-bromophenyl)-ethanone (8l) Mp 109-110 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 7.95-7.85 (m, 2 H), 7.65-7.55 (m, 2 H), 5.57 (d, 1 H, J = 9.0 Hz), 4.55 (d, 1 H, J = 9.0 Hz), 3.55 (s, 3 H) ppm. ¹³C NMR (100.62 MHz, CDCl3): δ = 193.6, 132.6, 131.8, 131.4, 130.4 93.4, 55.0 ppm. GC-MS: m/z (relative intensity) = 242 (1), 183 (100), 157 (83), 75 (60), 50 (51).
2-Hydroxy-2-methoxy-1-(4′-methoxyphenyl)-ethanone (8m) Mp 87-88 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 8.10-8.05 (m, 2 H), 7.05-6.95 (m, 2 H), 5.59 (s, 1 H), 4.75 (br s, 1 H), 3.90 (s, 3 H) 3.53 (s, 3 H) ppm. ¹³C NMR (100.62 MHz, CDCl3): δ = 192.6, 165.0, 132.5, 126.0, 114.5, 93.1, 55.9, 54.7 ppm. GC-MS: m/z (relative intensity) = 196 (1), 134 (100), 107 (80), 92 (83), 77 (86), 63 (51), 50 (29).