Synlett 2010(3): 387-390  
DOI: 10.1055/s-0029-1219200
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Synthesis of (+)-l-733,060 and (+)-CP-99,994: Application of an Ireland-Claisen Rearrangement/Michael Addition Domino Sequence

Narciso M. Garrido*, Mercedes García, M. Rosa Sánchez, David Díez, Julio G. Urones
Departamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, Spain
Fax: +34(923)294574; e-Mail: nmg@usal.es;
Further Information

Publication History

Received 12 October 2009
Publication Date:
19 January 2010 (online)

Abstract

An efficient asymmetric synthesis of (+)-l-733,060, (-)-(2S,3R)-1 and (+)-CP-99,994, starting from a Baylis-Hillman adduct, is described. The key steps include a novel domino reaction: stereoselective Ireland-Claisen rearrangement, asymmetric Michael addition, and piperidone ring formation through a one-pot reaction hydrogenolysis/lactamization and a stereoselective inversion of a hydroxy group.

    References and Notes

  • 1 Harrison T. Williams BJ. Swain CJ. Ball RG. Bioorg. Med. Chem. Lett.  1994,  4:  2545 
  • 2 Lotz M. Vaughan JH. Carson DA. Science  1988,  241:  1218 
  • 3 Perianan A. Snyderman R. Malfroy B. Biochem. Biophys. Res. Commun.  1989,  161:  520 
  • 4 Moskowitz MA. Trends Pharmacol. Sci.  1992,  13:  307 
  • 5 Lotz M. Vaughan JH. Carson DA. Science  1987,  235:  893 
  • 6 Otsuka M. Yanagisawa M. J. Physiol.  1988,  395:  255 
  • 7a Bilke JL. Moore SP. O’Brien P. Gilday J. Org. Lett.  2009,  11:  1935 
  • 7b Venkataiah M. Rao BV. Fadnavis NW. Tetrahedron: Asymmetry  2009,  20:  198 ; and references cited therein
  • 8 Davis AF. Zhang Y. Li D. Tetrahedron Lett.  2007,  48:  7838 ; and references cited therein
  • 9 Garrido NM. García M. Díez D. Sánchez MR. Sanz F. Urones JG. Org. Lett.  2008,  10:  1687 
  • For relevant reviews, see:
  • 10a Ciganek E. Organic Reactions   Vol. 51:  Paquette LA. Wiley; New York: 1997.  p.201 
  • 10b Basavaiah D. Dharma Rao P. Suguna Hymna R. Tetrahedron  1996,  52:  8001 
  • 10c Ghosh AK. Bilcer G. Schiltz G. Synthesis  2001,  2203 
  • 10d List B. Castello C. Synlett  2001,  1687 
  • 12 For a comprehensive review covering the scope, limitations and synthetic applications of the use of enantiomerically pure lithium amides as homochiral ammonia equivalents in conjugate addition reactions, see: Davies SG. Smith AD. Price PD. Tetrahedron: Asymmetry  2005,  16:  2833 
  • For reviews, see:
  • 13a Hiersemann M. Nubbemeyer U. The Claisen Rearrangement: Methods and Applications.   Wiley Interscience; Weinheim: 2007. 
  • 13b Martin Castro AM. Chem. Rev.  2004,  104:  2939 
  • 13c Chai Y. Hong S.-P. Lindsay HA. McFarland C. McIntosh MC. Tetrahedron  2002,  58:  2905 
  • 13d Enders D. Knopp M. Schiffers R. Tetrahedron: Asymmetry  1996,  7:  1847 
  • 13e Ziegler FE. Chem. Rev.  1988,  88:  1423 
  • 16 Prasad KR. Anbarasan P. Tetrahedron  2006,  62:  8303 
  • 17 Mamos P. Karigiannis G. Athanassopoulos C. Bichta S. Kalpaxis D. Papaioannou D. Tetrahedron Lett.  1995,  36:  5187 
  • 18a Demnitz FWJ. Philippini C. Raphael RA. J. Org. Chem.  1995,  60:  5114 
  • 18b Cooper MS. Heaney H. Newbold J. Sanderson WR. Synlett  1990,  533 
  • 20 Doi M. Nishi Y. Kiritoshi N. Iwata T. Nago M. Nakano H. Uchiyama S. Nakazawa T. Wakamiya T. Kobayashi Y. Tetrahedron  2002,  58:  8453 
  • 21 Tsunoda T. Yamamiya Y. Kawamura Y. Itô S. Tetrahedron Lett.  1995,  36:  2529 
  • 22 Paulvannan K. Hale R. Sedehi D. Chen T. Tetrahedron  2001,  57:  9677 
  • 23a Gemal AL. Luche J.-L. J. Am. Chem. Soc.  1981,  103:  5454 
  • 23b Elliott J. Hall D. Warren S. Tetrahedron Lett.  1989,  30:  601 
  • 24a Bhaskar G. Rao BV. Tetrahedron Lett.  2003,  44:  915 
  • 24b Cherian SK. Kumar P. Tetrahedron: Asymmetry  2007,  18:  982 
11

When the reaction was run for 12 h, the ratio of 4 to 5 was 1:5.

14

To our knowledge, this is the first anionic allylic acetate rearrangement. Nevertheless, Prof. Matthias C. McIntosh et al. (personal communication) have observed a product that could be derived from such a rearrangement in a bis-allylic ester system.

15

A diastereomeric excess of 89% was measured by ¹H NMR spectroscopic analysis of the crude product and >95% after crystallization. With a t-Bu ester of 4 we achieved >95% de in the crude material (ref. 9). An ee of >95% is consistent with the high optical purity of the lithium amide used.

19

Physical Data of (-)-(2S,3R)-1: [α]D ²6 -36.0 (c 0.85, CHCl3). IR (film): 2929, 2857, 1373, 1346, 1278, 1174, 1133, 887, 843, 756, 700 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.46 (dq, J = 12.6, 4.0 Hz, 1 H, H-4), 1.67-1.89 (m, 1 H, H-5), 1.83 (d, J = 13.1 Hz, 1 H, H-5), 2.26-2.35 (m, 1 H, H-4), 2.72 (td, J = 11.8, 1.8 Hz, 1 H, H-6), 3.09 (d, J = 11.4 Hz, 1 H, H-6), 3.40 (dt, J = 9.8, 4.1 Hz, 1 H, H-3), 3.52 (d, J = 9.0 Hz, 1 H, H-2), 4.06 (d, J = 12.3 Hz, 1 H, OCH AH), 4.44 (d, J = 12.3 Hz, 1 H, OCHH B), 7.26-7.45 (m, 7 H, ArH), 7.68 (s, 1 H, ArHF para ). ¹³C NMR (100 MHz, CDCl3): δ = 24.9 (CH2, C-5), 31.3 (CH2, C-4), 46.6 (CH2, C-6), 67.6 (CH, C-2), 70.0 (CH2, OCH2), 81.3 (CH, C-3), 121.1 (CH, ArF para ), 121.9 (C, CCF3), 123.2 (C, q, J = 271.0 Hz, CCF3), 124.6 (C, CCF3), 127.2 (2 × CH, ArF ortho ), 127.9 (3 × CH, Ph ortho + para ), 128.3 (2 × CH, Ph meta ), 131.3 (C, q, J = 33.0 Hz, CCF3), 141.1 (C, C ipsoF ), 141.6 (C, C ipso ). HRMS (ESI): m/z [M + H]+ calcd for C20H20ONF6: 404.1449; found: 404.1421.

25

All compounds were fully characterized by a range of methods including high-resolution mass spectrometry; the physical and spectroscopic data of reported compounds were in full agreement with those reported in the literature.