Abstract
Despite steric shielding by the 2,6-di-tert -butylphenyl group
(‘super-2,6-xylyl’ = xyl*),
inexpensive sodium phenolate (xyl*-ONa) reacts
with dimethyl sulfate to produce only xyl*-OCH3 (94%)
with complete suppression of the alternative 4-methylation. Reductive
cleavage of xyl*-OCH3 by elemental
lithium with the help of an electron carrier generates xyl*-Li,
which in turn yields xyl*-CO2 H (63%).
The corresponding 4-methyl-derivatives of these compounds were obtained
analogously. The acid chloride xyl*-COCl (77% yield)
acylates HalMgCH2 R to give only xyl*-COCH3 (86%)
or xyl*-COEt (97%). These two ketones
react with n -butyllithium (no carbonyl
addition) and Cl-PO(OEt)2 to furnish only the
enol phosphates xyl*-C(=CH2 )OPO(OEt)2 (84%)
or xyl*-C(=CHCH3 )OPO(OEt)2 (up
to 70%), respectively. Only 1,2-elimination occurs when
the latter two products are treated with tert -butyllithium,
affording xyl*-C≡CH (68%) or
xyl*-C≡CMe (88%), respectively.
Key words
acylation - alkynes - deoxygenation - electron
transfer - ketones
References <A NAME="RC01110SS-1">1 </A>
Sterically Congested Molecules, Part
21. Part 20 is ref. 23.
<A NAME="RC01110SS-2">2 </A>
Rundel W.
Chem.
Ber.
1968,
101:
2956
<A NAME="RC01110SS-3">3 </A>
DeKoning AJ.
Recl.
Trav. Chim. Pays-Bas
1981,
100:
421
<A NAME="RC01110SS-4">4 </A>
Yoshifuji M.
Niitsu T.
Shiomi D.
Inamoto N.
Tetrahedron Lett.
1989,
30:
5433
<A NAME="RC01110SS-5">5 </A>
Kawasaki S.
Nakamura A.
Toyota K.
Yoshifuji M.
Bull. Chem. Soc. Jpn.
2005,
78:
1110
<A NAME="RC01110SS-6">6 </A>
Schemes 20 and 23 in ref. 14.
<A NAME="RC01110SS-7">7 </A>
Kornblum N.
Seltzer R.
J. Am. Chem. Soc.
1961,
83:
3668
<A NAME="RC01110SS-8">8 </A>
Stoochnoff BA.
Benoiton NL.
Tetrahedron Lett.
1973,
14:
21
<A NAME="RC01110SS-9">9 </A> For the general phase-transfer setup
with MeI and aq NaOH, see:
Klages CP.
Voß J.
Chem. Ber.
1980,
113:
2255
<A NAME="RC01110SS-10">10 </A>
Loupy A.
Sansoulet J.
Vaziri-Zand F.
Bull.
Soc. Chim. Fr.
1987,
1027
<A NAME="RC01110SS-11">11 </A>
Schuster II.
Parvez M.
Freyer AJ.
J.
Org. Chem.
1988,
53:
5819
<A NAME="RC01110SS-12">12 </A>
Jackman LM.
DeBrosse CW.
J. Am. Chem. Soc.
1983,
105:
4177
<A NAME="RC01110SS-13">13 </A>
Knorr R.
Mehlstäubl J.
Böhrer P.
Chem. Ber.
1989,
122:
1791
<A NAME="RC01110SS-14">14 </A>
Maercker A.
Angew.
Chem., Int. Ed. Engl.
1987,
26:
972 ; Angew. Chem. 1987 , 99 , 1002
<A NAME="RC01110SS-15">15 </A>
Cohen T.
Sherbine JP.
Matz JR.
Hutchins RR.
McHenry BM.
Willey PR.
J.
Am. Chem. Soc.
1984,
106:
3245
<A NAME="RC01110SS-16">16 </A> For ¹ H NMR analysis,
see:
Edler R.
Voß J.
Chem.
Ber.
1989,
122:
187
<A NAME="RC01110SS-17">17 </A>
Adam W.
Richter M.
Chem. Ber.
1992,
125:
243
<A NAME="RC01110SS-18">18 </A> For 1a ,
pK
a = 14.22
in EtOH-H2 O (1:1), or ˜11.7 in H2 O, according
to:
Cohen LA.
Jones WM.
J. Am. Chem. Soc.
1963,
85:
3397
<A NAME="RC01110SS-19">19 </A> In accordance with the preparation
of 2,4,6-tri-tert -butylpropiophenone
from EtMgBr, see:
Leibfritz D.
Chem. Ber.
1975,
108:
3014
<A NAME="RC01110SS-20">20 </A>
Lauer D.
Staab HA.
Chem. Ber.
1969,
102:
1631
<A NAME="RC01110SS-21">21 </A>
Ditto SR.
Card RJ.
Davis PD.
Neckers DC.
J. Org. Chem.
1979,
44:
894
<A NAME="RC01110SS-22">22 </A>
de Jong P.
Recl.
Trav. Chim. Pays-Bas
1942,
61:
539
<A NAME="RC01110SS-23">23 </A>
Knorr R.
Menke T.
Ferchland K.
Mehlstäubl J.
Stephenson DS.
J. Am. Chem. Soc.
2008,
130:
14179
<A NAME="RC01110SS-24">24 </A>
Cohen LA.
Jones WM.
J. Am. Chem. Soc.
1962,
84:
1625
<A NAME="RC01110SS-25">25 </A>
This supports the E -configuration.
<A NAME="RC01110SS-26">26 </A> In agreement with q ³
J = 4.7 Hz
and q ²
J = -10.4 Hz
for propyne, see:
Hayamizu K.
Yamamoto O.
Org. Magn. Reson.
1980,
13:
460
<A NAME="RC01110SS-27">27 </A> In accordance with q ³
J = 4.5 Hz
and q ²
J = (-)10.5 Hz
for 1-phenylpropyne, see:
Wesdemiotis Ch.
Schwarz H.
Levsen K.
Borchers F.
Justus Liebigs Ann. Chem.
1976,
1889