Synthesis 2010(7): 1150-1158  
DOI: 10.1055/s-0029-1218654
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Bifunctional Hydroxamic Acids as Novel Ligands for the Hydrophilic Stabilization of Iron Oxide Nanoparticles

Andreas Hofmann*a, Christina Graf*a, Shih-Hao Kunga, Myeongseob Kimb, Xiaogang Pengb, Randa El-Aamaa, Eckart Rühla
a Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Fax: +49(30)83852717; e-Mail: ah79@chemie.fu-berlin.de; e-Mail: cmgraf@chemie.fu-berlin.de;
b Department of Chemistry and Biochemistry, University of Arkansas, Dickson Street, Fayetteville, AR 72701, USA
Further Information

Publication History

Received 12 August 2009
Publication Date:
29 January 2010 (online)

Abstract

A general method for synthesizing bifunctional hydroxamic acids containing carboxylic acid or amino functionalities is reported. Various products from simple alkyl to complex dendrimer-like structures are described. Such molecules have recently been used in ligand-exchange reactions for the hydrophilic stabilization of originally oleic acid protected iron oxide nanoparticles.

    References

  • 1 Reddy AS. Kumar MS. Reddy GR. Tetrahedron Lett.  2000,  41:  6285 
  • 2 Kurzak B. Kozlowski H. Farkas E. Coord. Chem. Rev.  1992,  114:  169 
  • 3 Folkers JP. Gorman CB. Laibinis PE. Buchholz S. Whitesides GM. Langmuir  1995,  11:  813 
  • 4 As an example the complex formation constant for acetohydroxamate with Fe(III) in aqueous solution is 2.6 × 10¹¹ mol. The corresponding value for acetate is only 2.4 × 10³ mol: Woo K. Lee HJ. Ahn JP. Park YS. Adv. Mater.  2003,  15:  1761 
  • 5 Emery T. Iron and Your Health: Facts and Fallacies   CRC; Boca Raton / FL: 1991.  p.15-17  
  • 6 Kim M. Chen Y. Liu Y. Peng X. Adv. Mater.  2005,  17:  1429 
  • 7 Park J. An K. Hwang Y. Park J.-G. Noh H.-J. Kim J.-Y. Park J.-H. Hwang N.-M. Hyeon T. Nature Mater.  2004,  3:  891 
  • 8 Jordan A. Maier-Hauff K. Wust P. Johannsen M. In Nanomaterials for Cancer Therapy   Challa K. Wiley-VCH; Weinheim: 2006.  p.242-258  
  • 9 Högemann D. Basilion JP. Weissleder R. Radiologe  2001,  41:  16 
  • 10 Jain TK. Richey J. Strand M. Leslie-Pelecky DL. Flask CA. Labhasetwar V. Biomaterials  2008,  29:  4012 
  • 12 Liénard BMR. Horsfall LE. Galleni M. Frère J.-M. Schofield CJ. Bioorg. Med. Chem. Lett.  2007,  17:  964 
  • 13 Bauer L. Exner O. Angew. Chem.  1974,  86:  419 
  • 14 Nagaoka Y. Maeda T. Kawai Y. Nakashima D. Oikawa T. Shimoke K. Ikeuchi T. Kuwajima H. Uesato S. Eur. J. Med. Chem.  2006,  41:  697 
  • 15 Guo W. Li J. Wang YA. Peng X. J. Am. Chem. Soc.  2003,  125:  3901 
  • 16 Wang YA. Li JJ. Chen H. Peng X. J. Am. Chem. Soc.  2002,  124:  2293 
  • 17 Niwa M. Morikawa M. Nabeta T. Higashi N. Macromolecules  2002,  35:  2769 
  • 18 McKenna MD. Barberá J. Marcos M. Serrano JL. J. Am. Chem. Soc.  2005,  127:  619 
  • 19 Selve C. Ravey J.-C. Stebe M.-J. El Moudjahid C. Moumni EM. Delpuech J.-J. Tetrahedron  1991,  47:  411 
  • 20 Ramsay SL. Freeman C. Grace PB. Redmond JW. MacLeod JK. Carbohydrate Res.  2001,  333:  59 
  • 21 McKenna M. Barbera J. Marcos M. Serrano JL. J. Am. Chem. Soc.  2005,  127:  619 
  • 22 Zhu J. Beugelmans R. Bourdet S. Chastanet J. Roussi G. J. Org. Chem.  1995,  60:  6389 
  • 23 Koushik M. Joyeeta S. Arabinda C. FEBS Lett.  2005,  579:  1291 
  • 24 Brouwer AJ. Liskamp RMJ. Eur. J. Org. Chem.  2005,  487 
  • 25 Brouwer AJ. Mulders SJE. Liskamp RMJ. Eur. J. Org. Chem.  2001,  1903 
  • 26 Freitas JM. Abrantes LM. Darbre T. Helv. Chim. Acta  2005,  88:  2470 
11

Hofmann, A.; Graf, C.; Semisch, A.; Hartwig, A.; Rühl, E. manuscript in preparation.