Synlett 2009(19): 3182-3186  
DOI: 10.1055/s-0029-1218351
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Ring Expansion of 2-Alkenyl Azetidines into Unsaturated Azocanes

Bruno Drouillat, François Couty*, Vanessa Razafimahaléo
Institut Lavoisier de Versailles, UMR CNRS 8180, Universud Paris, Université de Versailles Saint Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
Fax: +33(1)39254452; e-Mail: couty@chimie.uvsq.fr;
Further Information

Publication History

Received 30 June 2009
Publication Date:
11 November 2009 (online)

Abstract

Enantiomerically pure 2-alkenyl azetidines undergo a ring expansion into N-alkyl-1,2,3,6-azocines upon reaction with activated alkynes (ethyl propiolate or ethynyl p-tolyl sulfone). The scope of this ring enlargement, which provides a new entry to functionalized eight-membered ring nitrogen heterocycle, is discussed.

    References and Notes

  • For general reviews on the synthesis of azetidines prior to 2000, see:
  • 1a Moore JA. In Heterocyclic Compounds with Three and Four-Membered Rings   Weissberger A. Interscience Publishers; New-York: 1964.  Part 2. p.885-977  
  • 1b Cromwell NH. Phillips B. Chem. Rev.  1979,  79:  331 
  • 1c Moore JA. Ayers RS. In Small Ring Heterocycles-Part 2-Azetidines, β-Lactams, Diazetidines, and Diaziridines   Hassner A. John Wiley and Sons, Inc.; New York: 1983.  p.1 
  • 1d De Kimpe N. Azetidines, Azetines and Azete, In Comprehensive Heterocyclic Chemistry II, a review of the Literature of 1982-1995   Vol. 1B:  Pergamon; Oxford: 1996. 
  • For more recent reviews, see:
  • 1e Dejaegher Y. Kuz’menok NM. Zvonok AM. De Kimpe N. Chem. Rev.  2002,  102:  29 
  • 1f Couty F. Evano G. Prim D. Mini-Rev. Org. Chem.  2004,  1:  133 
  • 1g Couty F. Evano G. Org. Prep. Proced. Int.  2006,  38:  427 
  • 1h Brandi A. Cicchi S. Cordero FM. Chem. Rev.  2008,  108:  3988 
  • 1i Couty F. Synthesis of Azetidines, In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations   Vol. 40a:  Enders D. Georg Thieme Verlag; New York: 2009.  p.773-817  
  • 2 Padwa A. Gruber R. J. Am. Chem. Soc.  1970,  92:  107 
  • 3 Roberto D. Alper H. J. Am. Chem. Soc.  1989,  111:  7539 
  • 4a Durrat F. Vargas-Sanchez M. Couty F. Evano G. Marrot J. Eur. J. Org. Chem.  2008,  3286 
  • 4b Drouillat B. Couty F. David O. Evano G. Marrot J. Synlett  2008,  1345 
  • 4c Van Bradandt W. Van Landeghem R. De Kimpe N. Org. Lett.  2006,  8:  1105 
  • 5 Ungureanu I. Klotz P. Schoenfelder A. Mann A. Chem. Commun.  2001,  958 
  • 6 Couty F. Durrat F. Evano G. Marrot J. Eur. J. Org. Chem.  2006,  4214 
  • 7 For a review on this topic, see: Couty F. Durrat F. Evano G. Targets in Heterocyclic Systems-Chemistry and Properties   Vol. 9:  Attanasi OA. Spinelli D. Italian Society of Chemistry; Rome: 2005.  p.186 
  • 8 Weston MH. Nakajima K. Parvez M. Back TG. Chem. Commun.  2006,  3903 
  • 9 Weston MH. Nakajima K. Back TG. J. Org. Chem.  2008,  73:  4630 
  • 10 Winnick MA. Chem. Rev.  1981,  81:  491 
  • For examples of macrocyclisation involving N-alkylation, see
  • 11a Kan T. Fujiwara A. Kobayashi H. Fukuyama T. Tetrahedron  2002,  58:  6267 
  • 11b Dolman SJ. Sattely ES. Hoveyda AH. Schrock RR. J. Am. Chem. Soc.  2002,  124:  6991 
  • 11c Sattely ES. Cortez GA. Moebius DC. Schrock RR. Hoveyda AH. J. Am. Chem. Soc.  2005,  127:  8526 
  • For examples of RCM, see:
  • 11d Gille S. Ferry A. Billard T. Langlois BR. J. Org. Chem.  2003,  68:  8932 
  • For examples of ring cleavage, see:
  • 11e Vedejs E. Galante RJ. Goekjian PG. J. Am. Chem. Soc.  1998,  120:  3613 
  • 11f Iradier F. Arrayás RG. Carretero C. Org. Lett.  2001,  3:  2957 
  • 11g For examples of rearrangement, see: MaGee DI. Beck EJ. J. Org. Chem.  2000,  65:  8367 
  • For examples of [2,3]-sigmatropic shifts, see:
  • 11h Vedejs E. Hagen JP. Roach BL. Spear KL. J. Org. Chem.  1978,  43:  1185 
  • 11i Voskressensky LG. Listratova AV. Borisova TN. Kovaleva SA. Borisov RS. Varlamov AV. Tetrahedron  2008,  64:  10443 
  • 12 White JD. J. Org. Chem.  2000,  65:  9129 ; See also ref. 11e
  • 13a Godin G. Garnier E. Compain P. Martin OR. Ikeda K. Asano N. Tetrahedron Lett.  2004,  45:  579 
  • 13b Chang M.-Y. Kung Y.-H. Ma C.-C. Chen S.-T. Tetrahedron  2007,  63:  1339 
  • 14 Couty F. Prim D. Tetrahedron: Asymmetry  2006,  13:  2619 
  • 15 Walters MA. J. Org. Chem.  1996,  61:  978 
  • 16 Ramachandran PV. Rudd MT. Reddy MR. Tetrahedron Lett.  2005,  46:  2547 
17

Typical Procedure for the Ring Expansion of 2-Alkenyl Azetidines into Unsaturated Azocanes: The following procedure for the preparation of azocane 8 is representative. To a solution of azetidine 9 (800 mg, 3.03 mmol) in absolute EtOH (30 mL), was added in one portion, ethyl propiolate (0.62 mL, 6.06 mmol). The reaction mixture was stirred for 5 days and concentrated under reduced pressure. The crude residue was purified by flash chromatography (Pentane-Et2O, 75:25 + 0.1% Et3N) to afford 8 as a colourless oil (911 mg, 82%).
Compound 8: R f  = 0.30 (Pentane-Et2O, 75:25); [α]D ²5 -957 (c 0.95, CH2Cl2); ¹H NMR (300 MHz): δ = 0.95 (d, J = 6.7 Hz, 3 H, Me), 1.17 (t, J = 7.1 Hz, 3 H, OCH2CH 3), 2.95 (dd, J = 12.0, 6.5 Hz, 1 H, H7), 3.41-3.60 (m, 2 H, H4), 4.08 (q, J = 7.1 Hz, 2 H, OCH 2), 4.27 (d, J = 15.8 Hz, 1 H, NCHH), 4.43 (d, J = 15.8 Hz, 1 H, NCHH), 4.64 (m, 1 H, H8), 5.39 (dd, J = 11.1, 6.5 Hz, 1 H, H6), 5.56 (m, 1 H, H5), 7.03 (d, J = 7.9 Hz, 1 H, Ar), 7.11-7.27 (m, 9 H, Ar), 7.57 (s, 1 H, H2); ¹³C NMR (75 MHz): δ = 14.6 (CH3CH2), 18.7 (CH3), 25.1 (C4), 53.3 (NCH2), 56.0, 57.6 (C7, C8), 59.7 (OCH2), 94.9 (C3), 125.2, 126.8, 127.5, 128.4, 128.5, 128.6, 132.0 (C5, C6, CHAr), 139.1, 141.2 (CqAr), 151.9 (C2), 170.0 (C=O); MS (ESI): m/z (%) = 385.3 (20) [M + Na+], 362.2 (100) [M + H+]. Compound 7: white solid; mp 74 ˚C; R f  = 0.25 (Pentane-Et2O, 75:25); [α]D ²5 -548 (c 3.3, CH2Cl2); ¹H NMR (300 MHz): δ = 1.07 (d, J = 6.5 Hz, 3 H, Me), 2.47 (s, 3 H, Me), 3.02-3.16 (m, 2 H, H4, H7), 3.74 (dd, J = 16.2, 7.5 Hz, 1 H, H4′), 4.44 (d, J = 15.8 Hz, 1 H, NCHH), 4.58 (d, J = 15.8 Hz, 1 H, NCHH), 4.64 (m, 1 H, H8), 5.24 (m, 1 H, H5), 5.50 (m, 1 H, H6), 7.03 (m, 2 H, Ar), 7.19-7.44 (m, 10 H, Ar), 7.64 (s, 1 H, H2), 7.72 (d, J = 6.7 Hz, 2 H, Ar); ¹³C NMR (75 MHz): δ = 18.7 (CH3), 21.5 (CH3), 25.4 (C4), 53.2 (NCH2), 56.3, 57.7 (C7, C8), 102.5 (C3), 123.2, 125.5, 127.0, 127.2, 127.3, 127.6, 127.8, 128.3, 128.5, 128.7, 128.8, 129.4, 133.0 (C2, C5, C6, CHAr), 138.8, 139.9, 140.6, 142.4 (CqAr), 149.9 (C2); MS (ESI):
m/z (%) = 466.3 (100) [M + Na+].