References and Notes
For examples of bioactive natural
aziridines, see:
<A NAME="RG30109ST-1A">1a</A>
Hodgkinson TJ.
Shipman M.
Tetrahedron
2001,
57:
4467
<A NAME="RG30109ST-1B">1b</A>
Coleman RS.
Kong JS.
Richardson TE.
J. Am. Chem. Soc.
1999,
121:
9088
<A NAME="RG30109ST-1C">1c</A>
Coleman RS.
Li J.
Navarro A.
Angew.
Chem. Int. Ed.
2001,
40:
1736
<A NAME="RG30109ST-1D">1d</A>
Kasai M.
Kono M.
Synlett
1992,
778
<A NAME="RG30109ST-1E">1e</A>
Remers
WA.
In
The Chemistry of Antitumor, Antibiotics
Vol. 1:
Wiley
Interscience;
New York:
1979.
p.242
<A NAME="RG30109ST-1F">1f</A>
Katoh T.
Itoh E.
Yoshino T.
Terashima S.
Tetrahedron
1997,
53:
10229
<A NAME="RG30109ST-1G">1g</A>
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
<A NAME="RG30109ST-1H">1h</A>
Lefemine DV.
Dann M.
Barbatschi F.
Hausmann WK.
Zbinovsky V.
Monnikendam P.
Adam J.
Bohonos N.
J. Am. Chem.
Soc.
1962,
84:
3184
<A NAME="RG30109ST-1I">1i</A>
Gerhart F.
Higgins W.
Tardif C.
Ducep J.
J. Med. Chem.
1990,
33:
2157
For examples of bioactive active
non-natural aziridines as building blocks, see:
<A NAME="RG30109ST-2A">2a</A>
Tanner ME.
Miao S.
Tetrahedron
Lett.
1994,
35:
4073
<A NAME="RG30109ST-2B">2b</A>
Gerhart F.
Higgins W.
Tardiff C.
Ducep JB.
J. Med. Chem.
1990,
33:
2157
<A NAME="RG30109ST-2C">2c</A>
Skibo EB.
Islam I.
Heileman MJ.
Schulz WG.
J.
Med. Chem.
1994,
37:
78
<A NAME="RG30109ST-2D">2d</A>
Han I.
Kohn H.
J. Org. Chem.
1991,
56:
4648
For examples of applications of
aziridines as building blocks, see:
<A NAME="RG30109ST-3A">3a</A>
Kumar KSA.
Chaudhari VD.
Dhavale DD.
Org. Biomol. Chem.
2008,
6:
703
<A NAME="RG30109ST-3B">3b</A>
Kumar KSA.
Chaudhari VD.
Puranik VG.
Dhavale DD.
Eur. J. Org. Chem.
2007,
4895
<A NAME="RG30109ST-3C">3c</A>
Trost BM.
Dong G.
Org. Lett.
2007,
9:
2357
<A NAME="RG30109ST-3D">3d</A>
Caldwell JJ.
Craig D.
Angew. Chem.
Int. Ed.
2007,
46:
2631
<A NAME="RG30109ST-3E">3e</A>
Crawley SL.
Funk
RL.
Org.
Lett.
2006,
8:
3995
<A NAME="RG30109ST-3F">3f</A>
Banwell MG.
Lupton DW.
Org.
Biomol. Chem.
2005,
3:
213
<A NAME="RG30109ST-3G">3g</A>
Smith AB.
Kim D.
Org. Lett.
2004,
6:
1493
For leading references on ring-opening
reactions of aziridines, see:
<A NAME="RG30109ST-4A">4a</A>
Tanner D.
Angew.
Chem., Int. Ed. Engl.
1994,
33: 599
<A NAME="RG30109ST-4B">4b</A>
Pearson WH.
Lian BW.
Bergmeier SC. In
Comprehensive Heterocyclic Chemistry II
Vol.
IA:
Padwa A. , Ed.; Pergamon;
Oxford:
1996.
p.1-60
<A NAME="RG30109ST-4C">4c</A>
McCoull W.
Davis FA.
Synthesis
2000,
1347
For recent reviews on the synthesis
of aziridines, see:
<A NAME="RG30109ST-5A">5a</A>
Osborn HMI.
Sweeney JB.
Tetrahedron: Asymmetry
1997,
8:
1693
<A NAME="RG30109ST-5B">5b</A>
Hou XL.
Wu J.
Fan R.
Ding CH.
Luo ZB.
Dai LX.
Synlett
2006,
181
<A NAME="RG30109ST-5C">5c</A>
Watson IDG.
Yu L.
Yudin AK.
Acc. Chem. Res.
2006,
39:
194
<A NAME="RG30109ST-5D">5d</A>
Schaumann E.
Kirschning A.
Synlett
2007,
177
<A NAME="RG30109ST-5E">5e</A>
Singh GS.
D’Hooghe M.
De
Kimpe N.
Chem. Rev.
2007,
107:
2080
For recent references on the synthesis
of aziridines from imines, see:
<A NAME="RG30109ST-6A">6a</A>
Hodgson DM.
Kloesges J.
Evans B.
Org. Lett.
2008,
10:
2781
<A NAME="RG30109ST-6B">6b</A>
Denolf B.
Leemans E.
De Kimpe N.
J.
Org. Chem.
2007,
72:
3211
<A NAME="RG30109ST-6C">6c</A>
Sweeney JB.
Cantrill AA.
Drew MGB.
McLaren AB.
Thobhani S.
Tetrahedron
2006,
62:
3694
<A NAME="RG30109ST-6D">6d</A>
Sweeney
JB.
Cantrill AA.
McLaren AB.
Thobhani S.
Tetrahedron
2006,
62:
3681
<A NAME="RG30109ST-6E">6e</A>
Concellon JM.
Bernad PL.
Riego E.
Garcia-Granda S.
Forcen-Acebal A.
J. Org. Chem.
2001,
66:
2764
<A NAME="RG30109ST-6F">6f</A>
Kim DY.
Suh KH.
Choi JS.
Mang JY.
Chang SK.
Synth.
Commun.
2000,
30:
87
<A NAME="RG30109ST-6G">6g</A>
Cantrill AA.
Hall LD.
Jarvis AN.
Osborn HMI.
Raphy J.
Sweeney JB.
Chem.
Commun.
1996,
2631
<A NAME="RG30109ST-6H">6h</A>
Davis FA.
Zhou P.
Liang C.-H.
Reddy RE.
Tetrahedron: Asymmetry
1995,
6:
1511
<A NAME="RG30109ST-6I">6i</A>
Concellon JM.
Rodriguez-Sollo H.
Bernad PL.
Simal C.
J.
Org. Chem.
2009,
74:
2452
<A NAME="RG30109ST-6J">6j</A>
Lu Z.
Zhang Y.
Wulff WD.
J.
Am. Chem. Soc.
2007,
129:
7185
For the synthesis of aziridines
from sulfur ylides, see:
<A NAME="RG30109ST-7A">7a</A>
Gracia-Ruano JL.
Fernandez I.
del Prado-Catalina M.
Alcudia-Cruz A.
Tetrahedron:
Asymmetry
1996,
7:
3407
<A NAME="RG30109ST-7B">7b</A>
Higashiyma K.
Matsumura M.
Shiogama A.
Yamaguchi T.
Ohmiya S.
Heterocycles
2002,
58:
85
<A NAME="RG30109ST-7C">7c</A>
Corey EJ.
Chaykovsky M.
J. Am.
Chem. Soc.
1965,
87:
1353
<A NAME="RG30109ST-7D">7d</A>
Morton D.
Pearson D.
Field RA.
Stockman RA.
Synlett
2003,
1985
<A NAME="RG30109ST-7E">7e</A>
Midura WH.
Tetrahedron Lett.
2007,
48:
3907
<A NAME="RG30109ST-7F">7f</A>
Aggarwal VK.
Alonso E.
Hynd G.
Lydon KM.
Palmer MJ.
Porcelloni M.
Studley JR.
Angew. Chem. Int. Ed.
2001,
40:
1430
<A NAME="RG30109ST-7G">7g</A>
Aggarwal VK.
Stenson RA.
Jones
RVH.
Fieldhouse R.
Blacker J.
Tetrahedron
Lett.
2001,
42:
1587
<A NAME="RG30109ST-7H">7h</A>
Morton D.
Pearson D.
Field RA.
Stockman RA.
Chem. Commun.
2006,
1833
Though not an imine aziridination,
Ishikawa and co-workers have reported an elegant method in which
guanidinium ylides react with aldehydes to form aziridines stereo-selectively:
<A NAME="RG30109ST-8A">8a</A>
Disadee W.
Ishikawa T.
J. Org. Chem.
2005,
70:
9399
<A NAME="RG30109ST-8B">8b</A>
Haga T.
Ishikawa T.
Tetrahedron
2005,
61:
2857
Some amine-imide NH-transfer reagents
have been reported for the aziridination of chalcones, but they
are not applicable to the aziridination of imines:
<A NAME="RG30109ST-9A">9a</A>
Shen Y.-M.
Zhao M.-X.
Xu J.
Shi Y.
Angew. Chem. Int. Ed.
2006,
45:
8005
<A NAME="RG30109ST-9B">9b</A>
Ikeda I.
Machii Y.
Okahara M.
Synthesis
1980,
650
<A NAME="RG30109ST-9C">9c</A>
Xu J.
Jiao P.
J. Chem. Soc., Perkin Trans. 1
2002,
1491
<A NAME="RG30109ST-9D">9d</A>
Armstrong A.
Carbery DR.
Lamont SG.
Pape AR.
Wincewicz R.
Synlett
2006,
2504
<A NAME="RG30109ST-9E">9e</A>
Armstrong A.
Baxter CA.
Lamont SG.
Pape AR.
Wincewicz R.
Org. Lett.
2007,
9:
351
<A NAME="RG30109ST-10A">10a</A>
Papageorgiou CD.
Ley SV.
Gaunt MJ.
Angew. Chem.
Int. Ed.
2003,
42:
828
<A NAME="RG30109ST-10B">10b</A>
Papageorgiou CD.
Cubillo de Dios MA.
Ley SV.
Gaunt MJ.
Angew. Chem. Int. Ed.
2004,
43:
4641
<A NAME="RG30109ST-10C">10c</A>
Bremeyer N.
Smith
SC.
Ley SV.
Gaunt MJ.
Angew.
Chem. Int. Ed.
2004,
43:
2681
<A NAME="RG30109ST-10D">10d</A>
Johansson CCC.
Bremeyer N.
Ley SV.
Owen DR.
Smith SC.
Gaunt MJ.
Angew.
Chem. Int. Ed.
2006,
45:
6024
For examples of our recent work
on cyclization reactions, see:
<A NAME="RG30109ST-11A">11a</A>
Yadav LDS.
Kapoor R.
J.
Org. Chem.
2004,
69:
8118
<A NAME="RG30109ST-11B">11b</A>
Yadav LDS.
Kapoor R.
Synlett
2005,
3055
<A NAME="RG30109ST-11C">11c</A>
Yadav LDS.
Yadav S.
Rai VK.
Green Chem.
2006,
8:
455
<A NAME="RG30109ST-11D">11d</A>
Yadav LDS.
Awasthi C.
Rai VK.
Rai A.
Tetrahedron
Lett.
2007,
48:
4899
<A NAME="RG30109ST-11E">11e</A>
Yadav
LDS.
Rai A.
Rai VK.
Awasthi C.
Tetrahedron
2008,
64:
1420
<A NAME="RG30109ST-11F">11f</A>
Yadav LDS.
Kapoor R.
Synlett
2008,
2348
<A NAME="RG30109ST-11G">11g</A>
Yadav LDS.
Singh S.
Rai VK.
Green Chem.
2009,
11:
878
<A NAME="RG30109ST-11H">11h</A>
Yadav LDS.
Kapoor R. ;
Synlett
2009,
1055
<A NAME="RG30109ST-12">12</A>
General Procedure
for the One-Pot Synthesis of Aziridines 3: A mixture of phenacyl
bromide 2 (1 mmol), DABCO (0.2 mmol), imine 1 (1 mmol), and Na2CO3 (1.5 mmol)
in MeCN (5 mL) was stirred at 80 ˚C for 19-24
h (Table
[²]
). After
completion of the reaction (monitored by TLC), it was quenched with
aq HCl (1 M) and extracted with EtOAc (3 × 10 mL). The
combined organic phases were washed with a sat. aq solution of NaHCO3,
dried over MgSO4, and concentrated under reduced pressure.
The crude product thus obtained was purified by silica gel column chromatography
using EtOAc-n-hexane (2:8) as
eluent to afford analytically pure sample of 3 (Table
[²]
). Characterization
Data of Representative Compounds:
Product
3 (Table 2, entry 2): ¹H NMR (400 MHz,
CDCl3): δ = 8.03 (d, J = 8.6
Hz, 2 H), 7.42-7.61 (m, 3 H), 7.20-7.23 (m, 4
H), 7.10 (d, J = 8.4 Hz, 2 H),
6.75 (d, J = 8.4 Hz, 2 H), 4.51
(d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 2.36 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 190.03, 160.30, 144.12,
136.29, 135.63, 132.63, 129.90, 129.23, 129.00, 128.61, 127.35,
127.21, 113.90, 55.60, 49.99, 47.04, 21.24. IR (KBr): 3051, 2847,
1685, 1602, 1583, 1514, 1456, 1331, 1151, 843, 741 cm-¹.
EIMS: m/z = 407 [M+].
Anal. Calcd for C23H21NO4S: C,
67.79; H, 5.19; N, 3.44. Found: C, 67.99; H, 5.45; N, 3.21. Product 3 (Table 2, entry 6): ¹H NMR
(400 MHz, CDCl3): δ = 8.05 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.44 (d, J = 8.9 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 6.78 (d, J = 8.3 Hz, 2 H), 4.54 (d, J = 4.1 Hz, 1 H), 4.30 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 2.37 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 190.06, 160.60, 138.00,
136.66, 133.33, 130.00, 129.28, 129.10, 128.64, 127.38, 127.25,
114.20, 114.16, 55.80, 50.03, 47.09, 21.28. IR (KBr): 3049, 2842,
1687, 1603, 1584, 1516, 1448, 1336, 1146, 848 cm-¹.
EIMS: m/z = 441 [M+].
Anal. Calcd for C23H20ClNO4S: C,
62.51; H, 4.56; N, 3.17. Found: C, 62.74; H, 4.29; N, 2.84. Product 3 (Table 2, entry 10): ¹H NMR
(400 MHz, CDCl3): δ = 8.01 (d, J = 8.6 Hz, 2 H), 7.70 (d, J = 8.4 Hz, 2 H), 7.20 (d, J = 8.6 Hz, 2 H), 7.08 (d, J = 8.5 Hz, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 6.73 (d, J = 8.5 Hz, 2 H), 4.50 (d, J = 4.1 Hz, 1 H), 4.28 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 3.70 (s, 3 H), 2.35 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 190.00, 162.60,
160.00, 144.08, 136.25, 130.40, 129.10, 129.00, 128.50, 127.31,
127.18, 114.30, 113.30, 55.80, 55.10, 49.95, 47.00, 21.20. IR (KBr):
3057, 2847, 1677, 1602, 1577, 1514, 1457, 1334, 1148, 842 cm-¹.
EIMS: m/z = 437 [M+].
Anal. Calcd for C24H23NO5S: C,
65.89; H, 5.30; N, 3.20. Found: C, 65.62; H, 5.55; N, 2.87. Product 3 (Table 2, entry 14): ¹H
NMR (400 MHz, CDCl3): δ = 8.24 (d, J = 8.8 Hz, 2 H), 8.10 (d, J = 8.8 Hz, 2 H), 8.06 (d, J = 8.5 Hz, 2 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 6.80 (d, J = 8.2 Hz, 2 H), 4.56 (d, J = 4.1 Hz, 1 H), 4.32 (d, J = 4.1 Hz, 1 H), 3.72 (s, 3
H), 2.39 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 190.08, 170.00, 149.00,
144.19, 141.20, 136.36, 130.04, 129.90, 129.10, 127.41, 127.29,
123.00, 114.6, 56.01, 50.06, 47.12, 21.30. IR (KBr): 3064, 2853, 1683,
1603, 1584, 1512, 1453, 1338, 1150, 854 cm-¹.
EIMS: m/z = 452 [M+].
Anal. Calcd for C23H20N2O6S:
C, 61.05; H, 4.46; N, 6.19. Found: C, 61.37; H, 4.19; N, 6.47.
<A NAME="RG30109ST-13A">13a</A>
Ma L.
Jiao P.
Zhang Q.
Xu J.
Tetrahedron: Asymmetry
2005,
16:
3718
<A NAME="RG30109ST-13B">13b</A>
Ma L.
Du D.-M.
Xu J.
J.
Org. Chem.
2005,
70:
10155
<A NAME="RG30109ST-14">14</A>
Aggarwal VK.
Alonso E.
Bae I.
Hynd G.
Lydon
KM.
Palmer MJ.
Patel M.
Porcelloni M.
Richardson J.
Stenson RA.
Studley JR.
Vasse J.-L.
Winn CL.
J. Am. Chem. Soc.
2003,
125:
10926
<A NAME="RG30109ST-15">15</A>
Chiral HPLC: enantiomeric excess (ee)
was determined by using a Chiracel OD 25 cm, 4.6 mm internal diameter column,
hexane-i-PrOH (88:12), flow:
1 mL min-¹, 30 ˚C,
λ = 250
nm. The enantiomers had retention times (t
R)
of 22.4 min (major) and 24.2 min (minor).
<A NAME="RG30109ST-16">16</A>
Xu J.
Ma L.
Jiao P.
Chem. Commun.
2004,
1616