RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217985
A One-Pot Synthesis of 2-Aryl-4,5-anti-diphenyloxazolines
Publikationsverlauf
Publikationsdatum:
24. September 2009 (online)

Abstract
A one-pot procedure for the synthesis of oxazolines was developed. An amino alcohol was coupled with benzoyl chlorides in the presence of triethylamine to produce a β-hydroxyamide. Direct treatment with methanesulfonyl chloride forms oxazolines in good yields.
Key words
oxazoline - arenes - heterocycle substitutions - auxiliary
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Gant TG.Meyers AI. Tetrahedron 1994, 50: 2297Reference Ris Wihthout Link - 1b
Meyers AI. J. Org. Chem. 2005, 70: 6137 ; and references thereinReference Ris Wihthout Link - 2
Desimoni G.Faita G.Jørgensen KA. Chem. Rev. 2006, 106: 3561 - 3a
Reuman M.Meyers AI. Tetrahedron 1985, 41: 837Reference Ris Wihthout Link - 3b
Meyers AI.Mihelich ED. Angew. Chem. Int. Ed. Engl. 1976, 15: 270Reference Ris Wihthout Link - 4a
Meyers AI.Roth GP.Hoyer D.Barner BA.Laucher D. J. Am. Chem. Soc. 1988, 110: 4611Reference Ris Wihthout Link - 4b
Clayden J.Parris S.Cabedo N.Payne AH. Angew. Chem. Int. Ed. 2008, 47: 5060Reference Ris Wihthout Link - 5
Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835 - 6a
Meyers AI.Higashiyama K. J. Org. Chem. 1987, 52: 4592Reference Ris Wihthout Link - 6b
Kamata K.Agata I.Meyers AI. J. Org. Chem. 1998, 63: 3113Reference Ris Wihthout Link - 6c
Witte H.Seeliger W. Liebigs Ann. Chem. 1974, 6: 996Reference Ris Wihthout Link - Recently, oxidative preparations of oxazolines from aryl aldehydes and amino alcohols were published, see:
- 6d
Schwekendiek K.Glorius F. Synthesis 2006, 2996Reference Ris Wihthout Link - 6e
Karade NN.Tiwari GB.Gampawar SV. Synlett 2007, 1921Reference Ris Wihthout Link - 7a
Heine HW.Kaplin MS. J. Org. Chem. 1967, 36: 3069Reference Ris Wihthout Link - 7b
Ferraris D.Drury WJ.Cox C.Lectka T.
J. Org. Chem. 1998, 63: 4568Reference Ris Wihthout Link - 7c
Haidukewych D.Meyers AI. Tetrahedron Lett. 1972, 13: 3031Reference Ris Wihthout Link - 7d
Aggarwal VK.Vasse J.-L. Org. Lett. 2003, 5: 3987Reference Ris Wihthout Link - 7e
Besbes N. Bull. Pol. Acad. Sci., Chem. 2001, 49: 313Reference Ris Wihthout Link - 8a
Zook SE.Busse JK.Borer BC. Tetrahedron Lett. 2000, 41: 7017Reference Ris Wihthout Link - 8b
Desimoni G.Faita G.Mella M. Tetrahedron 1996, 52: 13649Reference Ris Wihthout Link - 8c
Fan L.Lobkovsky E.Ganem B. Org. Lett. 2007, 9: 2015Reference Ris Wihthout Link - 8d
Krout MR.Mohr JT.Stoltz BM. Org. Synth. 2009, 86: 181Reference Ris Wihthout Link - 8e
Kimura T.Uozuni Y. Organometallics 2008, 27: 5159Reference Ris Wihthout Link - 8f
Phomkeona K.Takemoto T.Ishima Y.Shibatomi K.Iwasa S.Nishiyama H. Tetrahedron 2008, 64: 1813Reference Ris Wihthout Link - 8g
White DE.Stewart IC.Grubbs RH.Stoltz BM. J. Am. Chem. Soc. 2008, 130: 810Reference Ris Wihthout Link - 8h
Khanbabaee K.Basceken S.Floerke U. Eur. J. Org. Chem. 2007, 5: 831Reference Ris Wihthout Link - 8i
Zhang W.Xie F.Matsuo S.Imahori Y.Kida T.Nakatsuji Y. Tetrahedron: Asymmetry 2006, 17: 767Reference Ris Wihthout Link - 8j
Iwasa S.Ishima Y.Widagdo HS.Aoki K.Nishiyama H. Tetrahedron Lett. 2004, 45: 2121Reference Ris Wihthout Link - 8k
Kim H.-J.Moon D.Lah Myoung S.Hong J.-I. Tetrahedron Lett. 2003, 44: 1887Reference Ris Wihthout Link - 8l
Hocke H.Uozumi Y. Tetrahedron 2003, 59: 619Reference Ris Wihthout Link - 8m
Wang Z.-Y.Du D.-M.Xu J.-X. Synth. Commun. 2005, 35: 299Reference Ris Wihthout Link - 8n
Lu S.-F.Du D.-M.Zhang S.-W.Xu J. Tetrahedron: Asymmetry 2005, 15: 3433Reference Ris Wihthout Link - 8o
Du D.-M.Wang Z.-Y.Xu D.-C.Hua W.-T. Synthesis 2002, 2347Reference Ris Wihthout Link - 9
Crosignani S.Young AC.Linclau B. Tetrahedron Lett. 2004, 45: 9611 - 10
Liu H.Xu JX.Du DM. Org. Lett. 2007, 9: 4725 - For related one-pot methods for the synthesis of BOX and PyBOX-type ligands, see:
- 11a
Hui X.-P.Huang J.-I.Chiou S.-J.Gau H.-M. J. Chin. Chem. Soc. 2006, 53: 421Reference Ris Wihthout Link - 11b
Bugarin A.Connell BT. Organometallics 2008, 27: 4357Reference Ris Wihthout Link - 11c
Kanazawa Y.Tsuchiya Y.Kobayashi K.Shiomi T.Itoh J.Kikuchi M.Yamamoto Y.Nishiyama H. Chem. Eur. J. 2006, 12: 63Reference Ris Wihthout Link - 11d
Ito J.Ujiie S.Nishiyama H. Chem. Commun. 2008, 16: 1923Reference Ris Wihthout Link - 11e
Shiomi T.Ito J.Yamamoto Y.Nishiyama H. Eur. J. Org. Chem. 2006, 24: 5594Reference Ris Wihthout Link - 11f
Zhang YJ.Wang F.Zhang W. J. Org. Chem. 2007, 72: 9208Reference Ris Wihthout Link - 11g
Wang F.Zhang Y.Yang G.Zhang W. Tetrahedron Lett. 2007, 48: 4179Reference Ris Wihthout Link - 11h
Uchida K.Fukuda T.Iwao M. Tetrahedron 2007, 63: 7178Reference Ris Wihthout Link - 12 The syn-
and anti-diphenyloxazolines display characteristic differences
in the chemical shifts of the benzylic protons α to
N and O, see:
Parris S. PhD Thesis University of Manchester; 2008. No syn-diphenyloxazoline was identified in the ¹H NMR spectra of the crude productsReference Ris Wihthout Link - 15
Groundwater PW.Garnett I.Morton AJ.Sharif T.Coles SJ.Hursthouse MB.Nyerges M.Anderson RJ.Bendell D.McKillop A.Zhang W. J. Chem. Soc., Perkin Trans. 1 2001, 2781
References and Notes
(4R,5R)-2,4,5-Triphenyloxazoline (4a): Benzoyl chloride (0.59 mL, 1.1 equiv)
was added dropwise over a period of 5 min to a stirred solution
of the amine [(1R,2S)-2-amino-1,2-diphenylethanol, 1 g,
1.0 equiv] in CH2Cl2 (100 mL) and Et3N
(2.6mL, 4 equiv) at 0 ˚C under a nitrogen atmosphere. The
solution was stirred for 16 h. The white suspension was cooled to
0 ˚C and methanesulfonyl chloride (0.54 mL, 1.5 equiv)
was added dropwise over 5 min (the solution clarified as the oxazoline
formed). The reaction was monitored by TLC and quenched with excess
aqueous NH4Cl after all the amide had been consumed.
The solution was partitioned between CH2Cl2 and
aqueous NH4Cl and extracted with CH2Cl2.
The organic layers were washed with aqueous sodium hydrogen carbonate
and brine. The solution was dried with MgSO4 and concentrated
under reduced pressure, leaving approximately 5 mL solvent to load
the crude reaction mixture onto silica gel. Purification using flash chromatography
(10% EtOAc in petroleum ether) gave oxazoline 4a in 71% yield. Mp 116 ˚C
(EtOAc-Petrol) (Lit.¹5 93-95 ˚C,
Et2O); [α]D
²² +17.6
(c 1, CHCl3); 1H NMR (CDCl3,
300 MHz): δ = 8.07 (d, J = 8
Hz, 2 H, CH C-2, C-6), 7.32 (m, 13 H, Ar), 5.35
(d, J = 8 Hz, CH-5′),
5.17 (d,
J = 8 Hz,
1 H, CH-4′); 13C NMR (CDCl3, 75.5 MHz): δ = 164.1,
141.9, 140.5, 131.8, 128.9, 128.9, 128.7, 128.5, 128.4, 127.8, 127.4,
126.7, 125.8, 89.0, 78.0.
(4R,5R)-2-(4′-Methoxy-3′-triisopropylsilyloxymethyl)-phenyl-4,5-diphenyloxazoline (4h): 4-Methoxy-3-(triiso-propylsilyloxymethyl)benzoic acid (0.45 g, 1.3 mmol) was stirred in thionyl chloride-CH2Cl2 (1:1 mL) until IR indicated complete conversion into the acyl chloride. The solvent and thionyl chloride was removed under reduced pressure. The crude benzoyl chloride (1.3 mmol) in CH2Cl2 (2 mL) was then added dropwise to a stirred solution of the (1R,2S)-2-amino-1,2-diphenylethanol (0.277 g, 1.3 mmol) in CH2Cl2 (15 mL) and Et3N (0.725 mL, 5.2 mmol) at 0 ˚C under nitrogen. The reaction mixture was warmed to r.t. and stirred until TLC indicated the reaction was complete. Methane sulfonyl chloride (0.151 mL, 1.95 mmol) was added and the solution was stirred until no amide remained by TLC. Saturated NH4Cl (5 mL) was added and the layers were separated. The aqueous layer was extracted with CH2Cl2 (3 × 5 mL), the combined organic extracts were dried (NaSO4) and the solvent was removed under reduced pressure to give the crude oxazoline. Purification by flash column chromatography (Petrol-EtOAc, 8:2) gave oxazoline 4h (0.49 g, 67%) as a yellow gum. R f = 0.73 (Petrol-EtOAc, 2:1); [α]D ¹9.5 -48.2 (c 1.025, CDCl3); MS (ES+): m/z (%) = 516.3 (100) [MH+]; HRMS: m/z [MH+] calcd for C32H42O3NSi: 516.2928; found: 516.2931; IR:(film): 2945, 2865, 1647, 1497, 1259 cm-¹; ¹H NMR (CDCl3, 500 MHz): δ = 8.25 (s, 1 H, C-2), 7.96 (dd, J = 2, 9 Hz, 1 H, C-5), 6.79 (d, J = 9 Hz, 1 H, C-4), 7.31-7.17 (m, 10 H, ArH), 5.31 (d, J = 7 Hz, 1 H, CH-5′), 5.1 (d, J = 7 Hz, 1 H, CH-4′), 4.78 (s, 2 H, ArCH 2), 3.76 (s, 3 H, OCH 3), 1.07 [m, 21 H, Si(i-Pr)3]; ¹³C NMR (CDCl3, 75 MHz): δ = 163.3, 157.8, 141.5, 139.9, 129.2, 127.8, 127.1, 126.6, 126.6, 125.8, 124.4, 118.8, 108.4, 87.5, 77.9, 59.2, 54.4, 17.0, 16.7, 13.0, 11.5, 11.3, 11.1, 10.7.