Synlett 2009(12): 2037-2038  
DOI: 10.1055/s-0029-1217551
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Lithium tri-sec-Butylborohydride (l-Selectride): A Powerful and Highly Stereoselective Reducing Reagent

Hong-Juan Wang*
The College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050016, P. R. of China
e-Mail: wanghjchem@gmail.com;

Further Information

Publication History

Publication Date:
03 July 2009 (online)

Biographical Sketches

Hong-Juan Wang was born in Shijiazhuang, Hebei Province, P. R. of China. She received her B.Sc. (2007) in Chemistry from Hebei Normal University. Presently she is a postgraduate and works under the supervision of Professor Zhan-Hui Zhang at Hebei Normal University. Her research interests focus on the development of new reagents and catalysts in organic synthesis.

Introduction

Lithium tri-sec-butylborohydride (l-Selectride) is known to be an exceptionally powerful and highly stereoselective reducing agent. It has been used for the diastereoselective reduction of the ketones to give the alcohol, [¹-¹0] selective 1,4-reduction of the enones by conjugate addition of hydride to afford ketones [¹¹] [¹²] or alcohols, [¹³] conjugate reduction of exocyclic acrylonitrile derivatives, [¹4] reduction of the double bond [¹5] and iodide. [¹6] It was also found to be an efficient reagent for the desymmetrization of meso-­diesters, [¹7] dehalogenation of monohalopyridines, [¹8] rearrangement of 5-trimethylsilylthebaine, [¹9] reductive cleavage of exoxides, [²0] and deprotection of N-carbomethoxy-substituted opioids to N-noropioids. [²¹]

Lithium tri-sec-butylborohydride is commercially available, but can also be readily prepared by addition of tri-sec-butylborane to a tetrahydrofuran solution of lithium aluminium hydride at room temperature. It is obtained as colorless solution in tetrahydrofuran. [²²]

Scheme 1

Abstracts

(A) Reduction of Carbonyl Compounds to the Corresponding Alcohols: l-Selectride can be applied for the diastereoselective reduction of α′-amino enones to afford chiral β-amino alcohols. [²³] Various enantiomerically pure aziridino ketones can be stereoselectively reduced by l-Selectride to provide the corresponding alcohols with high diastereoselectivities and yields. [²4] l-Selectride is also employed for the reduction of steroidal aldehydes. [²5]

(B) Reduction of α-Diazo Esters to Hydrazones: l-Selectride reduces α-diazo esters to give anti-hydrazones as the major products in THF solution. [²6]

(C) Diastereoselective Reduction of α-Sulfinylketoximes: An ­efficient procedure for stereoselective reduction of various ­α-sulfinylketoximes to the corresponding (S)-(N-methoxyamino)sulfoxides in THF solution is achieved with l-Selectride. [²7]

(D) Reduction of N-tert-Butanesulfinyl Imines: Andersen and co-workers [²5] reduced N-tert-butanesulfinyl imines with l-­Selectride in THF to provide the corresponding secondary sulfin­amides in high yield and diastereoselectivity. Reductions of the same sulfinyl imine afforded the opposite diastereomer in high yield and selectivity by changing the reductant to NaBH4. [²8]

(E) Selective Reductions of 1-Methyl-4-phenyl-2-pyridone: Mabic and Castagnoli reported that the reaction of 1-methyl-4-phenyl-2-pyridone with l-Selectride in THF gave exclusively the 1,4-reduction product. [²9]

(F) Selective Cleavage of Carbamates: A mild method for the cleavage of a variety of carbamates has been developed using l-Selectride. The selective cleavage of methyl carbamates in the presence of more sterically demanding carbamates can be accomplished efficiently. [³0]

(G) Demethylation of Methyl Phenyl Ethers: l-Selectride has successfully been used for the deprotection of methyl phenyl ethers. [³¹] l-Selectride is also an efficient agent for the 3-O-de­methylation of opioids. [³²]

(H) Asymmetric Reductive Aldol Reaction: Ghosh et al. have demonstrated that l-Selectride can be used to mediate reductive aldol coupling of enones and optically active α-alkoxy aldehydes to provide α,α-dimethyl-β-hydroxy ketones with excellent diastereoselectivity. [³³]

    References

  • 1 Enders D. Müller-Hüwen A. Eur. J. Org. Chem.  2004,  1732 
  • 2 Kaneno D. Tomoda S. Tetrahedron Lett.  2009,  50:  329 
  • 3 Hudson S. Kiankarimi M. Eccles W. Mostofi YS. Genicot MJ. Dwight W. Fleck BA. Gogas K. Wade WS. Bioorg. Med. Chem. Lett.  2008,  18:  4495 
  • 4 Peyron C. Navarre JM. Dubreuil D. Vierling P. Benhida R. Tetrahedron Lett.  2008,  49:  6171 
  • 5 Hayashi N. Suzuki T. Usui K. Nakada M. Tetrahedron   2009,  65 :  888 
  • 6 Lee S. Fuchs PL. Can. J. Chem.  2006,  84:  1442 
  • 7 Webber P. Krische MJ. J. Org. Chem.  2008,  73:  9379 
  • 8 Nicolaou KC. Tang Y. Wang J. Chem. Commun.  2007,  1922 
  • 9 Kim M. Yun H. Kwak H. Kim J. Lee J. Tetrahedron  2008,  64:  10802 
  • 10 Hartung RE. Paquette LA. Synthesis  2005,  3209 
  • 11 Comins DL. Joseph SP. Hong H. Al-awar RS. Foti CJ. Zhang Y.-M. Chen X. LaMunyon DH. Guerra-Weltzien M. Pure Appl. Chem.  1997,  69:  477 
  • 12 LaFrate AL. Katzenellenbogen JA. J. Org. Chem.  2007,  72:  8573 
  • 13 Murcia MC. de la Herran G. Plumet J. Csaky AG. Synlett  2007,  1553 
  • 14 Scott JP. Lieberman DR. Beureux OM. Brands KMJ. Davies AJ. Gibson AWHammond. McWilliams CJ. Stewart GW. Wilson RD. Dolling U.-H. J. Org. Chem.  2007,  72:  4149 
  • 15 Enders D. G. Heterocycles  2004,  64:  101 
  • 16 Schuster C. Broeker J. Knollmueller M. Gaertner P. Tetrahedron: Asymmetry  2005,  16:  2631 
  • 17 Schmidt B. Kühn C. Synlett  1998,  1240 
  • 18 Kim B.-H. Woo H.-G. Kim W.-G. Yun S.-S. Hwang T.-S. Bull. Korean Chem. Soc.  2000,  21:  211 
  • 19 Chen W. Wu H. Bernard D. Metcalf MD. Deschamps JR. Flippen-Anderson JL. AD. Coop A. J. Org. Chem.  2003,  68:  1929 
  • 20 Shimizu H. Shimizu K. Kubodera N. Yakushijin K. Horne DA. Heterocycles  2004,  63:  1335 
  • 21 Coop A. Janetka JW. Lewis JW. Rice KC. J. Org. Chem.  1998,  63:  4392 
  • 22 Brown HC. Hubbard JL. Singaram B. Tetrahedron  1981,  37:  2359 
  • 23 Chung S.-K. Kang D.-H. Tetrahedron: Asymmetry  1997,  8:  3027 
  • 24 Kim BC. Lee WK. Tetrahedron  1996,  52:  12117 
  • 25 Koovsk P. Dunn V. Grech JM. Šrogl J. Mitchell WL. Tetrahedron Lett.  1996,  37:  5585 
  • 26 Yasui E. Wada M. Takamura N. Chem. Pharm. Bull.  2007,  55:  1652 
  • 27 Miyashita K. Toyoda T. Miyabe H. Imanishi T. Synlett  1995,  1229 
  • 28 Colyer JT. Andersen NG. Tedrow JS. Soukup TS. Faul MM. J. Org. Chem.  2006,  71:  6859 
  • 29 Mabic S. Castagnolic NJ. J. Org. Chem.  1996,  61:  309 
  • 30 Coop A. Rice KC. Tetrahedron Lett.  1998,  39:  8933 
  • 31 Majetich G. Zhang Y. Wheless K. Tetrahedron Lett.  1994,  35:  8727 
  • 32 Wu H. Thatcher LN. Bernard D. Parrish DA. Deschamps JR. Rice KC. AD. Coop A. Org. Lett.  2005,  7:  2531 
  • 33 Ghosh AK. Kass J. Anderson DD. Xu X. Marian C. Org. Lett.  2008,  10:  4811 

    References

  • 1 Enders D. Müller-Hüwen A. Eur. J. Org. Chem.  2004,  1732 
  • 2 Kaneno D. Tomoda S. Tetrahedron Lett.  2009,  50:  329 
  • 3 Hudson S. Kiankarimi M. Eccles W. Mostofi YS. Genicot MJ. Dwight W. Fleck BA. Gogas K. Wade WS. Bioorg. Med. Chem. Lett.  2008,  18:  4495 
  • 4 Peyron C. Navarre JM. Dubreuil D. Vierling P. Benhida R. Tetrahedron Lett.  2008,  49:  6171 
  • 5 Hayashi N. Suzuki T. Usui K. Nakada M. Tetrahedron   2009,  65 :  888 
  • 6 Lee S. Fuchs PL. Can. J. Chem.  2006,  84:  1442 
  • 7 Webber P. Krische MJ. J. Org. Chem.  2008,  73:  9379 
  • 8 Nicolaou KC. Tang Y. Wang J. Chem. Commun.  2007,  1922 
  • 9 Kim M. Yun H. Kwak H. Kim J. Lee J. Tetrahedron  2008,  64:  10802 
  • 10 Hartung RE. Paquette LA. Synthesis  2005,  3209 
  • 11 Comins DL. Joseph SP. Hong H. Al-awar RS. Foti CJ. Zhang Y.-M. Chen X. LaMunyon DH. Guerra-Weltzien M. Pure Appl. Chem.  1997,  69:  477 
  • 12 LaFrate AL. Katzenellenbogen JA. J. Org. Chem.  2007,  72:  8573 
  • 13 Murcia MC. de la Herran G. Plumet J. Csaky AG. Synlett  2007,  1553 
  • 14 Scott JP. Lieberman DR. Beureux OM. Brands KMJ. Davies AJ. Gibson AWHammond. McWilliams CJ. Stewart GW. Wilson RD. Dolling U.-H. J. Org. Chem.  2007,  72:  4149 
  • 15 Enders D. G. Heterocycles  2004,  64:  101 
  • 16 Schuster C. Broeker J. Knollmueller M. Gaertner P. Tetrahedron: Asymmetry  2005,  16:  2631 
  • 17 Schmidt B. Kühn C. Synlett  1998,  1240 
  • 18 Kim B.-H. Woo H.-G. Kim W.-G. Yun S.-S. Hwang T.-S. Bull. Korean Chem. Soc.  2000,  21:  211 
  • 19 Chen W. Wu H. Bernard D. Metcalf MD. Deschamps JR. Flippen-Anderson JL. AD. Coop A. J. Org. Chem.  2003,  68:  1929 
  • 20 Shimizu H. Shimizu K. Kubodera N. Yakushijin K. Horne DA. Heterocycles  2004,  63:  1335 
  • 21 Coop A. Janetka JW. Lewis JW. Rice KC. J. Org. Chem.  1998,  63:  4392 
  • 22 Brown HC. Hubbard JL. Singaram B. Tetrahedron  1981,  37:  2359 
  • 23 Chung S.-K. Kang D.-H. Tetrahedron: Asymmetry  1997,  8:  3027 
  • 24 Kim BC. Lee WK. Tetrahedron  1996,  52:  12117 
  • 25 Koovsk P. Dunn V. Grech JM. Šrogl J. Mitchell WL. Tetrahedron Lett.  1996,  37:  5585 
  • 26 Yasui E. Wada M. Takamura N. Chem. Pharm. Bull.  2007,  55:  1652 
  • 27 Miyashita K. Toyoda T. Miyabe H. Imanishi T. Synlett  1995,  1229 
  • 28 Colyer JT. Andersen NG. Tedrow JS. Soukup TS. Faul MM. J. Org. Chem.  2006,  71:  6859 
  • 29 Mabic S. Castagnolic NJ. J. Org. Chem.  1996,  61:  309 
  • 30 Coop A. Rice KC. Tetrahedron Lett.  1998,  39:  8933 
  • 31 Majetich G. Zhang Y. Wheless K. Tetrahedron Lett.  1994,  35:  8727 
  • 32 Wu H. Thatcher LN. Bernard D. Parrish DA. Deschamps JR. Rice KC. AD. Coop A. Org. Lett.  2005,  7:  2531 
  • 33 Ghosh AK. Kass J. Anderson DD. Xu X. Marian C. Org. Lett.  2008,  10:  4811 

Scheme 1