Synlett 2009(11): 1757-1760  
DOI: 10.1055/s-0029-1217365
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Novel Chiral C 2-Symmetric Bisimidazole-N-Oxides as Promising Organocatalysts for Enantioselective Allylation of Aromatic Aldehydes

Piotr Kwiatkowskia,b, Paulina Muchac, Grzegorz Mlostoń*c, Janusz Jurczak*a,b
a Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
b Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
Fax: +48(22)6326681; e-Mail: jurczak@icho.edu.pl;
c Department of Organic and Applied Chemistry, Łódź University, Narutowicza 68, 90-136 Łódź, Poland
Fax: +48(42)6655162; e-Mail: gmloston@uni.lodz.pl;
Further Information

Publication History

Received 17 February 2009
Publication Date:
12 June 2009 (online)

Abstract

A series of new, chiral Lewis bases containing imidazole-N-oxide moiety were tested for purposes of asymmetric catalysis. Bisimidazole-N-oxides derived from (1R,2R)- and (1S,2S)-trans-1,2-diaminocyclohexane were used as catalysts in the allylation reaction of aromatic aldehydes with allyltrichlorosilane, which yielded homoallyl alcohols in good yields and with enantioselectivity up to 80% ee. Screening of catalysts revealed that the type of substituents and their location in imidazole ring has a crucial influence on enantioselectivity of the addition process.

    References and Notes

  • For reviews on asymmetric organocatalysis, see:
  • 1a Enantioselective Organocatalysis   Dalko PI. Wiley-VCH; Weinheim: 2007. 
  • 1b List B. , Ed. Chem. Rev.  2007,  107:  5413-5883  
  • 1c Gaunt MJ. Johansson CCC. McNally A. Vo NC. Drug Discov. Today  2007,  12:  8 
  • 1d Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis   Berkessel A. Gröger H. Wiley-VCH; Weinheim: 2004. 
  • 1e Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 2a Denmark SE. Beutner GL. Angew. Chem. Int. Ed.  2008,  47:  1560 
  • 2b Gawronski J. Wascinska N. Gajewy J. Chem. Rev.  2008,  108:  5227 
  • 2c Kizirian J.-C. Chem. Rev.  2008,  108:  140 
  • 2d France S. Guerin DJ. Miller SJ. Lectka T. Chem. Rev.  2003,  103:  2985 
  • For recent examples of asymmetric reactions catalyzed by chiral pyridine-derived N-oxides, see:
  • 3a Malkov AV. Westwater M.-M. Gutnov A. Ramírez-López P. Friscourt F. Kadlčíková A. Hodačová J. Rankovic Z. Kotora M. Kočovský P. Tetrahedron  2008,  64:  11335 
  • 3b Malkov AV. Ramírez-López P. Biedermannová L. Rulíek L. Dufková L. Kotora M. Zhu F. Kočovsk P. J. Am. Chem. Soc.  2008,  130:  5341 
  • 3c Hrdina R. Boyd T. Valterova I. Hodacova J. Kotora M. Synlett  2008,  3141 
  • 3d Hrdina R. Dracinsky M. Valterova I. Hodacova J. Cisarova I. Kotora M. Adv. Synth. Catal.  2008,  350:  1449 
  • 3e Takenaka N. Sarangthem SR. Captain B. Angew. Chem. Int. Ed.  2008,  47:  9708 
  • 3f Chelucci G. Baldino S. Pinna GA. Benaglia M. Buffa L. Guizzetti S. Tetrahedron  2008,  64:  7574 
  • 3g Hrdina R. Valterova I. Hodacova J. Cisarova I. Kotora M. Adv. Synth. Catal.  2007,  349:  822 
  • 3h Chelucci G. Belmonte N. Benaglia M. Pignataro L. Tetrahedron Lett.  2007,  48:  4037 
  • 3i Pignataro L. Benaglia M. Annunziata R. Cinquini M. Cozzi F. J. Org. Chem.  2006,  71:  1458 
  • 3j Chai Q. Song C. Sun Z. Ma Y. Ma C. Dai Y. Andrus MB. Tetrahedron Lett.  2006,  47:  8611 
  • 3k Denmark SE. Yu F. Tetrahedron: Asymmetry  2006,  17:  687 
  • For recent examples of asymmetric reactions catalyzed by chiral N-oxides derived from tertiary amines, see:
  • 4a Simonini V. Benaglia M. Pignataro L. Guizzetti S. Celentano G. Synlett  2008,  1061 
  • 4b Wen Y. Gao B. Fu Y. Dong S. Liu X. Feng X. Chem. Eur. J.  2008,  14:  6789 
  • 4c Qin B. Liu X. Shi J. Zheng K. Zhao H. Feng F. J. Org. Chem.  2007,  72:  2374 
  • For reviews on application of chiral N-oxides in asymmetric catalysis, see:
  • 5a Benaglia M. Guizzetti S. Pignataro L. Coord. Chem. Rev.  2008,  252:  492 
  • 5b Malkov AV. Kočovsk P. Eur. J. Org. Chem.  2007,  29 
  • 5c Chelucci G. Marineddu G. Pinna GA. Tetrahedron: Asymmetry  2004,  15:  1373 
  • 5d Malkov AV. Kočovsk P. Curr. Org. Chem.  2003,  7:  1737 
  • 5e Nakajima M. J. Synth. Org. Chem. Jpn.  2003,  61:  1081 
  • 6a Jasinski M. Mloston G. Mucha P. Linden A. Heimgartner H. Helv. Chim. Acta  2007,  90:  1765 
  • 6b Mloston G. Mucha P. Urbaniak K. Broda K. Heimgartner H. Helv. Chim. Acta  2008,  91:  232 
  • 6c Jasinski M. Mloston G. Linden A. Heimgartner H. Helv. Chim. Acta  2008,  91:  1916 
  • 6d

    Mloston G., Romanski J., Jasinski M., Heimgartner H.; Tetrahedron: Asymmetry; 2009, 20, 1073.

  • 7 Mucha P. Mloston G. Jasinski M. Linden A. Heimgartner H. Tetrahedron: Asymmetry  2008,  19:  1600 
  • 9 Edward JT. Chubb FL. Gilson DFR. Hynes RC. Sauriol F. Wisenthal A. Can. J. Chem.  1999,  77:  1057 
  • For reviews on asymmetric allylation of carbonyl compounds, see:
  • 10a Denmark SE. Fu J. Chem. Rev.  2003,  103:  2763 
  • 10b Denmark SE. Fu J. Chem. Commun.  2003,  167 
  • 11 Nakajima M. Saito M. Shiro M. Hashimoto S.-I. J. Am. Chem. Soc.  1998,  120:  6419 
8

Typical Procedure for the Preparation of Bisimidazole N -Oxides - Synthesis of (1 R ,2 R )-1d
To a stirred soln of (1R,2R)-trans-1,2-diamonocyclohexane (114.0 mg, 1.0 mmol) in MeOH (3 mL), a portion of paraformaldehyde (63.0 mg, 2.1 mmol) was added and the soln was stirred overnight at ambient temperature. After evaporation of the solvent in vacuum, the resulting, viscous oil was dissolved in glacial acid (7 mL) containing 473 mg (2.1 mmol) α-benzil monoxime 3d and the soln obtained thereby was stirred overnight at ambient temperature. Next day, a gentle stream of gaseous HCl was bubbled through the soln for ca. 1.5 h, and the separated colorless bisimidazole N-oxide hydrochloride was filtered off and dried in vacuum exsiccator. The crude hydrochloride was suspended in MeOH (ca 25 mL) and 1 g of the solid NaHCO3 was added; stirring was continued for ca.1.5 h until evolution of CO2 was complete. Precipitated solid of inorganic salts was filtered off, and the filtrate was evaporated to dryness. The colorless solid material was triturated with a little portion (ca. 5 mL) of a CHCl3-MeOH (2:1) mixture. Suspended, solid material was separated, and the filtrate was evaporated to dryness. Crude product was washed with little amount of dry acetone to yield analytically pure sample of (1R,2R)-trans-1,1′-(cyclohexane-1,2-diyl)bis(4,5-diphenylimida-zole)-3,3′-dioxide [(R,R)-1d]; yield 342 mg (62%); colorless crystals; mp(dec) 208-210 ˚C. IR (KBr): ν = 3424-2867 (vs, br), 1635 (m), 1570 (m), 1506 (m), 1484 (m), 1446 (m), 1405 (m), 1339 (s), 1222 (m), 1193 (m), 767 (s), 711 (s), 658 (m), 636 (m) cm. ¹H NMR (CD3OD): δ = 8.08 [s, 2 H, HC(2), HC(2′) imidazole], 7.65-7.50 (m, 4 H, 4 arom. H), 7.38-7.23 (m, 12 H, 12 arom. H), 7.18-7.07 (m, 4 H, 4 arom. H), 4.37-4.26 (m, 2 H, 2CH, cHex), 2.38-1.40 (m, 8 H, 4CH2, cHex). ¹³C NMR (CD3OD): δ = 131.8, 131.4, 131.2, 130.8, 129.9, 129.7 [6 d, 20 arom. CH, C(2), C(2′) imidazole], 131.0, 129.6, 127.3 [3 s, 4 arom. C, C(4), C(4′), C(5), C(5′) imidazole], 61.4 (d, 2 CH, cHex), 34.0, 25.3 (2 t, 4 CH2, cHex). ESI-MS: m/z = 575 (100) [M + Na]+. ESI-HRMS:
m/z calcd for C36H32N4O2Na [M + Na]+: 575.2423; found: 575.2422. [α]D ²0 +6.0 (c 1.02; MeOH). For X-ray structure determination of (1R,2R)- and (1S,2S)-1d, see: Mloston G., Mucha P., Tarka R., Urbaniak K., Linden A., Heimgartner H.; Polish J. Chem.; 2009, 83, 1105.

12

General Allylation Procedure
To a stirred soln of the catalyst 1d (27.7 mg, 0.05 mmol) in dry CH2Cl2 (1 mL) the corresponding aldehyde 4 (0.5 mmol) and dry diisopropylethylamine (260 µL, 1.5 mmol) were added. After 5 min. magnetic stirring at 0 ˚C, allyltrichloro-silane (90-95 µL, 0.6 mmol) was added to the reaction mixture. Stirring was continued at 0 ˚C for another 20 h, and after this time the mixture was firstly diluted with Et2O, quenched with aq NaHCO3 (1 mL) and next shaken with H2O. Organic layer was separated and the aqueous soln was extracted again with Et2O (2 × 10 mL); combined ethereal soln were dried over MgSO4, filtered, and concentrated. The residue was purified by silica gel column chromatography. Yields refer to the isolated amount of alcohol 5. The ee was determined using HPLC technique with chiral column (Chiralcel OD-H or Chiralpak AS-H); mixture of 2-PrOH-hexane was applied as an eluent.