RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217185
Homodiphenylprolinol Methyl Ether as a Highly Efficient Catalyst for Asymmetric Michael Addition of Ketones to Nitroalkenes
Publikationsverlauf
Publikationsdatum:
18. Mai 2009 (online)

Abstract
A series of novel homoprolinol analogues and ethers were developed and evaluated in direct Michael addition of ketones to nitroalkenes. Excellent yields (up to 99%), diastereoselectivities (up to 98% dr) and enantioselectivities (up to 98% ee) were achieved in the presence of 5 mol% homodiphenylprolinol methyl ether as catalyst and 5 mol% o-methylbenzoic acid as the additive at room temperature.
Key words
homodiphenylprolinol methyl ether - organocatalyst - asymmetric Michael addition - ketone - nitroolefin
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1
Perlmutter P. Conjugate Addition Reactions in Organic Synthesis Pergamon; Oxford: 1992.Reference Ris Wihthout Link - For reviews, see:
- 2a
Tomioka K.Nagaoka Y.Yamaguchi M. In Comprehensive Asymmetric CatalysisJacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999.Reference Ris Wihthout Link - 2b
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877Reference Ris Wihthout Link - 2c
Krause N.Hoffmann-Röder A. Synthesis 2001, 171Reference Ris Wihthout Link - 2d
Christoffers J.Koripelly G.Rosiak A.Rössle M. Synthesis 2007, 1279Reference Ris Wihthout Link - 3a
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138Reference Ris Wihthout Link - 3b
Seayad J.List B. Org. Biomol. Chem. 2005, 3: 719Reference Ris Wihthout Link - 3c
Berkessel A.Groger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis Wiley-VCH; Weinheim: 2005.Reference Ris Wihthout Link - 3d
Tsogoeva SB. Eur. J. Org. Chem. 2007, 11: 1701Reference Ris Wihthout Link - 3e
Connon SJ. Chem. Commun. 2008, 2499Reference Ris Wihthout Link - 3f
Vicario JL.Badía D.Carrillo L. Synthesis 2007, 2065Reference Ris Wihthout Link - 3g
Almaşi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299Reference Ris Wihthout Link - 3h
Pellissier H. Tetrahedron 2007, 63: 9267Reference Ris Wihthout Link - 4
Sakthivel K.Notz W.Bui T.Barbas CF. J. Am. Chem. Soc. 2001, 123: 5260 - 5
List B.Pojarliev P.Martin HJ. Org. Lett. 2001, 3: 2423 - 6
Enders D.Seki A. Synlett 2002, 26 - 7a
McCooey SH.Connon SJ. Org. Lett. 2007, 9: 599Reference Ris Wihthout Link - 7b
Liu K.Cui HF.Nie J.Dong KY.Li XJ.Ma JA. Org. Lett. 2007, 9: 923Reference Ris Wihthout Link - 7c
Huang HB.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170Reference Ris Wihthout Link - 7d
Xu YM.Córdova A. Chem. Commun. 2006, 460Reference Ris Wihthout Link - 7e
Xu YM.Zou WB.Sundén H.Ibrahem I.Córdova A. Adv. Synth. Catal. 2006, 348: 418Reference Ris Wihthout Link - 7f
Luo SZ.Li JY.Zhang L.Xu H.Cheng JP. Chem. Eur. J. 2008, 14: 1273Reference Ris Wihthout Link - 7g
Mandal T.Zhao CG. Angew. Chem. Int. Ed. 2008, 47: 7714Reference Ris Wihthout Link - 7h
Xue F.Zhang SL.Duan WH.Wang W. Adv. Synth. Catal. 2008, 350: 2194Reference Ris Wihthout Link - 8a
Zu LS.Wang J.Li H.Wang W. Org. Lett. 2006, 8: 3077Reference Ris Wihthout Link - 8b
Wang J.Li H.Lou BS.Zu LS.Guo H.Wang W. Chem. Eur. J. 2006, 12: 4321Reference Ris Wihthout Link - 8c
Ishii T.Fujioka S.Sekiguchi Y.Kotsuki H. J. Am. Chem. Soc. 2004, 126: 9558Reference Ris Wihthout Link - 8d
Vishnumaya Singh VK. Org. Lett. 2007, 9: 1117Reference Ris Wihthout Link - 8e
Andrey O.Alexakis A.Bernardinelli G. Org. Lett. 2003, 5: 2559Reference Ris Wihthout Link - 8f
Alexakis A.Andrey O. Org. Lett. 2002, 4: 3611Reference Ris Wihthout Link - 8g
Mase N.Watanabe K.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 4966Reference Ris Wihthout Link - 8h
Pansare SV.Pandya K. J. Am. Chem. Soc. 2006, 128: 9624Reference Ris Wihthout Link - 8i
Cao YJ.Lai YY.Wang X.Li YJ.Xiao WJ. Tetrahedron Lett. 2007, 48: 21Reference Ris Wihthout Link - 8j
Cao CL.Ye MC.Sun XL.Tang Y. Org. Lett. 2006, 8: 2901Reference Ris Wihthout Link - 8k
Tsogoeva SB.Wei SW. Chem. Commun. 2006, 1451Reference Ris Wihthout Link - 8l
Luo SZ.Xu H.Mi XL.Li JY.Zheng XX.Cheng JP. J. Org. Chem. 2006, 71: 9244Reference Ris Wihthout Link - 8m
Yan ZY.Niu YN.Wei HL.Wu LY.Zhao YB.Liang YM. Tetrahedron: Asymmetry 2006, 17: 3288Reference Ris Wihthout Link - 8n
Mitchell CET.Cobb AJA.Ley SV. Synlett 2005, 611Reference Ris Wihthout Link - 8o
Betancort JM.Sakthivel K.Thayumanavan R.Tanaka F.Barbas CF. Synthesis 2004, 1509Reference Ris Wihthout Link - 8p
Andrey O.Alexakis A.Tomassini A.Bernardinelli G. Adv. Synth. Catal. 2004, 346: 1147Reference Ris Wihthout Link - 8q
Clarke ML.Fuentes JA. Angew. Chem. Int. Ed. 2007, 46: 930Reference Ris Wihthout Link - 8r
Luo SZ.Mi XL.Song LZ.Xu H.Cheng JP. Angew. Chem. Int. Ed. 2006, 45: 3093Reference Ris Wihthout Link - 8s
Luo SZ.Mi XL.Liu S.Xu H.Cheng JP. Chem. Commun. 2006, 3687Reference Ris Wihthout Link - 8t
Almasi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2006, 17: 2064Reference Ris Wihthout Link - 8u
Li PH.Wang L.Wang M.Zhang YC. Eur. J. Org. Chem. 2008, 1157Reference Ris Wihthout Link - 9a
Mandal T.Zhao CG. Tetrahedron Lett. 2007, 48: 5803Reference Ris Wihthout Link - 9b
Hayashi Y.Gotoh H.Hayashi T.Shoji M. Angew. Chem. Int. Ed. 2005, 44: 4212Reference Ris Wihthout Link - 9c
Zhu SL.Yu SY.Ma DW. Angew. Chem. Int. Ed. 2008, 47: 545Reference Ris Wihthout Link - 9d
García-García P.Ladépêhe A.Halder R.List B. Angew. Chem. Int. Ed. 2008, 47: 4719Reference Ris Wihthout Link - 9e
Hayashi Y.Itoh T.Ohkubo M.Ishikawa H. Angew. Chem. Int. Ed. 2008, 47: 4722Reference Ris Wihthout Link - 9f
Marigo M.Fielenbach D.Braunton A.Kjærsgaard A.Jørgensen KA. Angew. Chem. Int. Ed. 2005, 44: 3703Reference Ris Wihthout Link - 9g
Marigo M.Franzén J.Poulsen TB.Zhuang W.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 6964Reference Ris Wihthout Link - 10a
Zhao GL.Ibrahem I.Sundén H.Córdova A. Adv. Synth. Catal. 2007, 349: 1210Reference Ris Wihthout Link - 10b
Liu FY.Wang SW.Wang N.Peng YG. Synlett 2007, 2415Reference Ris Wihthout Link - 15
Seebach D.Golinski J. Helv. Chim. Acta 1981, 64: 1413
References and Notes
The Synthesis
and Characterization of the Catalyst 3k.
Compound 8a (see Supporting Information; 24.8 g,
62 mmol) was dissolved in MeI (2 mL) and THF (10 mL), NaH (310 mmol)
was added slowly to the stirred mixture over a course of 30 min
at 0 ˚C under N2. The reaction mixture
was then stirred overnight and quenched with H2O. Excess
MeI was removed under reduced pressure in a well-ventilated hood.
The residue was dissolved in EtOAc and partitioned between EtOAc
and H2O. The organic layers were collected, washed with
brine, dried over with MgSO4, filtered, and concentrated
to give colorless oil. The oil was eluted through a SiO2 column
by EtOAc-hexane gave pure 9a with
yield 70%.
The resulting 9a was
dissolved in MeOH (6 mL) and Pd/C (20% in weight)
was added. The mixture was stirred overnight at r.t. under H2 atmosphere
(1.013 bar). Then, the mixture was filtered through Celite and the
solvent evaporated under reduced pressure to afford the crude product,
which was further purified by flash column chromatography on SiO2 (CH2Cl2-MeOH = 90:10)
to afford the title compounds 3k (Scheme
2). White solid, mp 86-87 ˚C, [α]D
²5 +27.0
(c 1.0, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 1.17-1.23
(m, 1 H), 1.50-1.71 (m, 3 H), 1.90 (s, 1 H), 2.46-2.52
(dd, J = 14.2,
4.7 Hz, 1 H), 2.56-2.68 (m,
2 H), 2.76-2.82
(m, 1 H), 2.87-2.94 (m, 1 H), 3.06 (s, 3 H), 7.17-7.36
(m, 10 H) ppm. ¹³C NMR (75.5 MHz, CDCl3): δ = 23.8,
32.1, 40.9, 45.7, 50.5, 54.5, 82.3, 126.5, 126.7, 126.8, 127.0,
127.8, 127.9, 145.3, 145.5 ppm. IR (KBr):
ν = 3416,
3363, 3022, 2958, 2826, 1618, 1599, 1491, 1444, 1400, 1189, 1155,
1122, 1065, 916, 849, 752, 698, 621, 594 cm-
¹.
HRMS (TOF): m/z calcd for C19H24NO [M + H]+: 282.1858;
found: 282.1832.

Scheme 2
The trimethyl silyl ether showed good catalytic reactivity and slightly decreased diastereoselectivity (up to 97:3) and enantioselectivity (up to 93% ee) compared to 3k. Unfortunately, it was unstable and easily decomposed into alcohol.
13When benzoic acid was used as cocatalyst, the same good results were obtained at r.t. (99% yield, 96% ee and 92% dr after 24 h). But, when the reaction proceeded at 0 ˚C, benzoic acid has shown slightly lower reactivity (58% yield) than o-methylbenzoic acid (63% yield) with the same stereoselectivities (99% ee, 98% dr) after 48 h.
14
Typical Procedure
for the Direct Asymmetric Michael Addition of Ketones to Nitroolefins
To
a stirred solution of catalyst (0.05 equiv) in hexane (0.5 mL) and
ketone (3 equiv) at r.t. was added o-methylbenzoic acid
(0.05 equiv) and, after 5 min, nitroolefin (1 equiv) was added.
The reaction mixture was stirred at r.t. for the appropriate time.
The solvent was evaporated and the residue was chromatography on
SiO2 column (hexane-EtOAc = 10:1)
to afford the desired product. The ee of the product was determined
by chiral HPLC analysis (Daicel Chiralpak AS-H or AD-H) to compare
with their corresponding racemic peaks.