RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217092
[5+3] Cycloaddition of 3-Oxidopyrylium: A Novel Route to Functionalized Cyclooctanoids from Furans
Publikationsverlauf
Publikationsdatum:
03. November 2009 (online)

Abstract
We report a facile and efficient synthesis of highly functionalized cyclooctanoid derivatives by employing a dimerization reaction of 3-oxidopyrylium ylides. Different substituents are introduced on the dimer and the stereochemical outcome of the resultant cyclooctanoids is unambiguously established by single-crystal X-ray analysis.
Key words
cyclooctanoids - 3-oxidopyrylium ylides - [5+3] cycloadditions - stereoselectivity - density functional calculations
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Oishi T.Ohtsuks Y. In Studies in Natural Products Synthesis Vol. 3: . Elsevier; Amsterdam: 1989. p.73Reference Ris Wihthout Link - 1b
Rigby JH. In Studies in Natural Products Synthesis Vol. 12: . Elsevier; Amsterdam: 1993. p.233Reference Ris Wihthout Link - 2
Illuminati G.Mandoline L. Acc. Chem. Res. 1981, 14: 95 - 3
Molander GA. Acc. Chem. Res. 1998, 31: 603 - For reviews on oxidopyrylium cycloadditions, see:
- 4a
Singh V.Krishna UM. .Trivedi GK. Tetrahedron 2008, 64: 3405Reference Ris Wihthout Link - 4b
Sammes PG. Gazz. Chim. Ital. 1986, 51: 1573Reference Ris Wihthout Link - 4c
Wender PA.Love JA. In Advances in Cycloaddition Vol. 5:Harmata M. JAI Press; Stamford CT: 1999. p.1Reference Ris Wihthout Link - 4d
Mascarenas JL. In Advances in Cycloaddition Vol. 6:Harmata M. JAI Press; Stamford CT: 1999. p.1Reference Ris Wihthout Link - 5
Krishna UM.Deodhar KD.Trivedi GK.Mobin SM. J. Org. Chem. 2004, 69: 967 - 6a
Hendrickson JB.Farina JS. J. Org. Chem. 1980, 45: 3361Reference Ris Wihthout Link - 6b
Sammes PG.Street LJ. J. Chem. Soc., Perkin Trans. 1 1983, 1261Reference Ris Wihthout Link - 6c
Lee H.-Y.Kim HY.Kim BG.Kee JM. Synthesis 2007, 2360Reference Ris Wihthout Link - For other methods utilizing 3-oxidopyrylium in cyclooctanoid synthesis, see:
- 7a
Magnus P.Booth J.Diorazio L.Donohoe T.Lynch V.Magnus N.Mendoza J.Pye P.Tarrant J. Tetrahedron 1996, 52: 14103Reference Ris Wihthout Link - 7b
Delgado A.Castedo L.Mascarenas JL. Org. Lett. 2002, 4: 3091Reference Ris Wihthout Link - 7c
Radhakrishnan KV.Syam Krishnan K.Bhadbhade MM.Bhosekar GV. Tetrahedron Lett. 2005, 46: 4785Reference Ris Wihthout Link - 8a
Mehta G.Singh V. Chem. Rev. 1999, 99: 881Reference Ris Wihthout Link - 8b
Petasis NA.Patane MA. Tetrahedron 1992, 48: 5757Reference Ris Wihthout Link - 8c
Rodriguez J.Michaut A. Angew. Chem. Int. Ed. 2006, 45: 5740Reference Ris Wihthout Link - 8d
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199Reference Ris Wihthout Link - 8e
McReynolds MD.Dougherty JM.Hanson PR. Chem. Rev. 2004, 104: 2239Reference Ris Wihthout Link - 9a
Wender PA.Ihle NC. J. Am. Chem. Soc. 1986, 108: 4678Reference Ris Wihthout Link - 9b
Wender PA.Snapper ML. Tetrahedron Lett. 1987, 28: 2221Reference Ris Wihthout Link - 9c
Wender PA.Ihle NC. Tetrahedron Lett. 1987, 28: 2451Reference Ris Wihthout Link - 9d
Wender PA.Ihle NC.Correia CRD. J. Am. Chem. Soc. 1988, 110: 5904Reference Ris Wihthout Link - 9e
Wender PA.Tebbe MJ. Synthesis 1991, 1089Reference Ris Wihthout Link - 9f
Wender PA.Nuss JM.Smith DB.Suarez-Sobrino A.Vagberg J.Decosta D.Bordner J. J. Org. Chem. 1997, 62: 4908 ; and references cited thereinReference Ris Wihthout Link - 10a
Sieburth SM.McGee KF.Al-Tel TH. J. Am. Chem. Soc. 1998, 120: 587Reference Ris Wihthout Link - 10b
Sieburth SM.Cunard NT. Tetrahedron 1996, 52: 6251Reference Ris Wihthout Link - 11a
Molander GA.Etter JB.Harring LS.Thorel P.-J. J. Am. Chem. Soc. 1991, 113: 8036Reference Ris Wihthout Link - 11b
Molander GA.Brown GA.deGracia IS. J. Org. Chem. 2002, 67: 3459Reference Ris Wihthout Link - 12a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413Reference Ris Wihthout Link - 12b
Fu GC.Grubbs RH. J. Am. Chem. Soc. 1992, 114: 5426Reference Ris Wihthout Link - 12c
Fu GC.Grubbs RH. J. Am. Chem. Soc. 1992, 114: 7324Reference Ris Wihthout Link - 12d
Fu GC.Nguyen ST.Grubbs RH. J. Am. Chem. Soc. 1993, 115: 9856Reference Ris Wihthout Link - 12e
Grubbs RH.Miller SJ.Fu GC. Acc. Chem. Res. 1995, 28: 446Reference Ris Wihthout Link - 13a
Schmalz H.-G. Angew. Chem., Int. Ed. Engl. 1995, 34: 1833Reference Ris Wihthout Link - 13b
Mar tin SF.Chen H.-J.Courtney AK.Liao Y.Patzel M.Ramser MN.Wagman AS. Tetrahedron 1996, 52: 7251Reference Ris Wihthout Link - 13c
Schneider MF.Junga H.Blechert S. Tetrahedron 1995, 51: 13003Reference Ris Wihthout Link - 13d
Furstner A.Muller T. Synlett 1997, 1010Reference Ris Wihthout Link - 14a
Achamatowicz O.Bukowski P.Szechner B.Swiezchowska Z.Zamojski A. Tetrahedron 1971, 27: 1973Reference Ris Wihthout Link - 14b
Georgiadis MP.Couladouros EA. J. Org. Chem. 1986, 51: 2725Reference Ris Wihthout Link - For recent reports from our group, see:
- 14c
Krishna UM.Srikanth GSC.Trivedi GK.Deodhar KD. Synlett 2003, 2383Reference Ris Wihthout Link - 14d
Krishna UM.Trivedi GK. Tetrahedron Lett. 2004, 45: 257Reference Ris Wihthout Link - 14e
Krishna UM.Deodhar KD.Trivedi GK. Tetrahedron 2004, 60: 4829Reference Ris Wihthout Link - 14f
Krishna UM.Srikanth GSC.Trivedi GK. Tetrahedron Lett. 2003, 44: 8227Reference Ris Wihthout Link - 16a
Khurana JM.Sharma P. Bull. Chem. Soc. Jpn. 2004, 77: 549Reference Ris Wihthout Link - 16b
Ganem B.Osby JO. Chem. Rev. 1986, 86: 763Reference Ris Wihthout Link - 17
Sabesan S.Neira S. J. Org. Chem. 1991, 56: 5468 - 18
Michaut A.Rodriguez J. Angew. Chem. Int. Ed. 2006, 45: 5740Reference Ris Wihthout Link - 19
Hosokawa T.Murahashi S.-I. Acc. Chem. Res. 1990, 23: 49Reference Ris Wihthout Link - The barriers for intramolecular aldol reactions (catalyzed as well as uncatalyzed processes) are generally found in the range of 5 to 30 kcal/mol. See:
- 20a
Bouillon J.-P.Portella C.Bouquant J.Humbel S. J. Org. Chem. 2000, 65: 5823Reference Ris Wihthout Link - 20b
Bahmanyar S.Houk KN. J. Am. Chem. Soc. 2001, 123: 12911Reference Ris Wihthout Link - 20c
Clemente FR.Houk KN. J. Am. Chem. Soc. 2005, 127: 11294Reference Ris Wihthout Link - 20d
The computed trends are found to be the same when solvent single-point energies as well as the free energies in the gas phase are compared.
Reference Ris Wihthout Link - Various reports are available on the successful aldol approach for the system that lacks the oxo bridge. See:
- 22a
Yamada K.Iwadare H.Mukaiyama T. Chem. Pharm. Bull. 1997, 45: 1898Reference Ris Wihthout Link - 22b
Mukaiyama T.Shiina I.Kimura K.Akiyama Y.Iwadare H. Chem. Lett. 1995, 229Reference Ris Wihthout Link - 23 For an exhaustive review on oxa-bridge
openings, see:
Chiu P.Lautens M. Top. Curr. Chem. 1997, 190: 1 - 24
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision C.02 Gaussian Inc.; Wallingford (CT): 2004. - 25a
Cossi M.Barone V.Cammi R.Tomasi J. Chem. Phys. Lett. 1996, 255: 327Reference Ris Wihthout Link - 25b
Cances E.Mennucci B.Tomasi J. J. Chem. Phys. 1997, 107: 3032Reference Ris Wihthout Link - 26a
Gonzalez C.Schlegel HB. J. Chem. Phys. 1989, 90: 2154Reference Ris Wihthout Link - 26b
Gonzalez C.Schlegel HB. J. Phys. Chem. 1990, 94: 5523Reference Ris Wihthout Link
References
CCDC 232578 (8),
232579 (11), and 735916 (17)
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
X-ray
crystallographic data for 8: CCDC 232578,
empirical formula C12H16O5, formula
weight 240.25, T = 293(2)
K, λ = 0.70930 Å, crystal
system monoclinic, space group P21/n, unit cell dimensions a = 7.4888(5) Å, α = 90.000˚, b = 15.2345(11) Å, β = 98.888(5)˚, c = 10.0221(5) Å, γ = 90.000˚, V = 1129.67(12) ų, Z = 4, D
calcd = 1.413
Mg/m³, absorption coefficient 0.110
mm-¹, F(000) = 512,
crystal size 0.35 × 0.30 × 0.20 mm, data collection θ range
2.45-25.01˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 18, -11 ≤ l ≤ 11, reflections collected
1875, unique 1875 [R(int) = 0.0000], refinement
method full-matrix least-squares on F2,
data/restraints/parameters 1875/0/220,
goodness-of-fit on F
² 1.134,
final R indices [I > 2σ(I)] R1 = 0.0539, wR2 = 0.1481, R indices (all data) R1 = 0.0571, wR2 = 0.1524,
largest diff. peak and hole 0.249 and -0.394 e˙Å-³.
X-ray
crystallographic data for 11: CCDC 232579,
empirical formula C14H18O6, formula
weight 282.28, T = 293(2)
K, λ = 0.70930 Å, crystal
system: monoclinic, space group P21/n, unit cell dimensions a = 10.5020(13) Å, b = 10.6560(10) Å, c = 12.9850(18) Å, β = 109.664(10)˚, V = 1368.4(3) ų, Z = 4, D
calcd = 1.370
Mg/m³, absorption coefficient 0.107
mm-¹, F(000) = 600,
crystal size 0.4 × 0.35 × 0.35 mm, data collection θ range
2.17-24.90˚, index ranges 0 ≤ h ≤ 12, 0 ≤ k ≤ 12, -15 ≤ l ≤ 14, reflections collected
1840, unique 1840 [R(int) = 0.0000],
refinement method full-matrix least-squares on F2,
data/restraints/parameters 1840/0/253,
goodness-of-fit on F
² 1.023,
final R indices [I > 2σ(I)] R1 = 0.0711, wR2 = 0.1712, R indices (all data) R1 = 0.0875, wR2 = 0.1823,
largest diff. peak and hole 0.339 and -0.283 e˙Å-³.
X-ray
crystallographic data for 17: CCDC 735916,
empirical formula C25H28O4, formula
weight 392.47, T = 293(2)
K, λ = 0.70930 Å, crystal
system monoclinic, space group P21/c, unit cell dimensions a = 7.550(5) Å, b = 24.686(3) Å, c = 11.4950(10) Å, β = 90.116(7)˚, V = 2087.1(3) ų, Z = 4, D
calcd = 1.249
Mg/m³, absorption coefficient 0.083
mm-¹, F(000) = 840,
crystal size 0.4 × 0.4 × 0.35 mm, data collection θ range
1.65-24.92˚, index ranges 0 ≤ h ≤ 8, 0 ≤ k ≤ 29, -13 ≤ l ≤ 13, reflections collected
3074, unique 3074 [R(int) = 0.0000],
refinement method full-matrix least-squares on F2,
data/restraints/parameters 3074/0/375, goodness-of-fit
on F
² 1.065, final R indices [I > 2σ(I)] R1 = 0.0423, wR2 = 0.0983, R indices (all data) R1 = 0.0620, wR2 = 0.1107,
largest diff. peak and hole 0.183 and -0.162 e˙Å-³.
This prediction is in accordance with experimental attempts for the ring closure in which starting material is recovered instead of the desired cyclic product.