RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217090
Towards Modular Design of Chiroptically Switchable Molecules Based on Formation and Cleavage of Metal-Ligand Coordination Bonds
Publikationsverlauf
Publikationsdatum:
26. Oktober 2009 (online)

Abstract
The results presented in this paper demonstrate that the proposed design of C 2-symmetric, pentadentate achiral or chiral ligands 8a-d and 15 allows to generate, upon coordination with Ni(II) and Pd(II), the corresponding diastereomeric complexes possessing three new elements of chirality: stereogenic axis, center, and helix. Of particular importance is that due to the specific steric characteristics of the designed ligands the formation of the corresponding diastereomeric products is highly stereoselective allowing preparation of only two out of four possible stereochemical combinations. For instance, each diastereoisomeric product (R a′,P h′,S c′)-9a and (R a′,M h′,R c′)-12a can be selectively prepared and characterized in solid state, simply by the choice of the chelating metal [Ni(II) or Pd(II)]. Furthermore, introduction of stereochemical information into the ligands design with application of a simple chiral ‘Amine Module’ allows for complete transfer of the corresponding stereochemistry to the newly generated axial, helical, and central chirality. For example, starting with chiral ligand (R)-15, out of eight possible products, only a single product of (R c,R a,P h,S c) absolute configuration was obtained in the solid state. Taking into account the modular nature of this design, one may agree that modification of the three major ‘phenone’, ‘acid’, and ‘amine’ modules, or application of different metals, will allow for virtually unlimited structural and functional flexibility in fine-tuning the diastereomeric relationships of this type of complexes making them more selective and controllable by an external stimulus.
Key words
chiral molecular switches - macromolecular ligands - nickel - palladium
- For reviews, see:
- 1a
Molecular
Switches
Feringa BL. Wiley-VCH; Weinheim: 2001.Reference Ris Wihthout Link - 1b
Feringa BL.Koumura N.van Delden RA.ter Wiel MKJ. Appl. Phys. A 2002, 75: 301Reference Ris Wihthout Link - 1c
de Silva AP.Gunaratne HQ.Gunnlaugsson T.Huxley AJM.McCoy CP.Rademacher JT.Rice TE. Chem. Rev. 1997, 97: 1515Reference Ris Wihthout Link - 1d
Rambidi NG. Microelectron. Eng. 2003, 69: 485Reference Ris Wihthout Link - For recent publications, see:
- 2a
Kapetanakis E.Douvas AM.Velessiotis D.Makarona E.Argitis P.Glezos N.Normand P. Adv. Mater. 2008, 20: 4568Reference Ris Wihthout Link - 2b
Rath AK.Dhara K.Banerjee P.Pal AJ. Langmuir 2008, 24: 5937Reference Ris Wihthout Link - 2c
Das BC.Pal AJ. Org. Electron. 2008, 9: 39Reference Ris Wihthout Link - 2d
Facchetti A.Letizia J.Yoon M.-H.Mushrush M.Katz HE.Marks TJ. Chem. Mater. 2004, 16: 4715Reference Ris Wihthout Link - 2e
Schindler F.Lupton JM.Mueller J.Feldmann J.Scherf U. Nat. Mater. 2006, 5: 141Reference Ris Wihthout Link - 2f
Liu Z.Yasseri AA.Loewe RS.Lysenko AB.Malinovskii VL.Zhao Q.Surthi S.Li Q.Misra V.Lindsey JS.Bocian DF. J. Org. Chem. 2004, 69: 5568Reference Ris Wihthout Link - 3a
Zelikovich L.Libman J.Shanzer A. Nature 1995, 374: 790Reference Ris Wihthout Link - 3b
Kalny D.Elhabiri M.Moav T.Vaskevich A.Rubinstein I.Shanzer A.Albrecht-Gary A.-M. Chem. Commun. 2002, 1426Reference Ris Wihthout Link - 3c
Plenio H.Aberle C. Chem. Eur. J. 2001, 7: 4438Reference Ris Wihthout Link - 3d
Janek J. Nat. Mater. 2009, 8: 88Reference Ris Wihthout Link - 3e
Fukui M.Mori T.Inoue Y.Rathore R. Org. Lett. 2007, 9: 3977Reference Ris Wihthout Link - 3f
Deng J.Song N.Zhou Q.Su Z. Org. Lett. 2007, 9: 5393Reference Ris Wihthout Link - 3g
Mori T.Inoue Y. J. Phys. Chem. A 2005, 109: 2728Reference Ris Wihthout Link - 3h
Shie T.-L.Lin C.-H.Lin S.-L.Yang D.-Y. Eur. J. Org. Chem. 2007, 4831Reference Ris Wihthout Link - 3i
Roehr H.Trieflinger C.Rurack K.Daub J. Chem. Eur. J. 2006, 12: 689Reference Ris Wihthout Link - 3j
Siemeling U.Scheppelmann I.Heinze J.Neumann B.Stammler A.Stammler H.-G. Chem. Eur. J. 2004, 10: 5661Reference Ris Wihthout Link - 3k
Aubert N.Troiani V.Gross M.Solladie N. Tetrahedron Lett. 2002, 43: 8405Reference Ris Wihthout Link - 3l
Collin J.-P.Kern J.-M.Raehm L.Sauvage J.-P. Mol. Switches 2001, 249Reference Ris Wihthout Link - 3m
Ambroise A.Wagner RW.Rao PD.Riggs JA.Hascoat P.Diers JR.Seth J.Lammi RK.Bocian DF.Holten D.Lindsey JS. Chem. Mater. 2001, 13: 1023Reference Ris Wihthout Link - 4a
Bissel RA.Lrdova E.Kaifer AE.Stoddart JF. Nature 1994, 369: 133Reference Ris Wihthout Link - 4b
Ashton PR.Balzani V.Becher J.Credi A.Fyfe MCT.Mattersteig G.Menzer S.Nielsen MB.Raymo FM.Stoddart JF.Venturi M.Williams DJ. J. Am. Chem. Soc. 1999, 121: 3951Reference Ris Wihthout Link - 4c
Bauer M.Mgtle FV. Chem. Ber. 1992, 125: 1675Reference Ris Wihthout Link - 4d
Dichtel WR.Miljanic OS.Zhang W.Spruell JM.Patel K.Aprahamian I.Heath JR.Stoddart JF. Acc. Chem. Res. 2008, 41: 1750Reference Ris Wihthout Link - 4e
Stoddart JF.Colquhoun HM. Tetrahedron 2008, 64: 8231Reference Ris Wihthout Link - 4f
Kay ER.Leigh DA. Pure Appl. Chem. 2008, 80: 17Reference Ris Wihthout Link - 4g
Kim Y.-H.Goddard WA. J. Phys. Chem. C 2007, 111: 4831Reference Ris Wihthout Link - 4h
Saha S.Stoddart JF. Chem. Soc. Rev. 2007, 36: 77Reference Ris Wihthout Link - 4i
Flood AH.Wong EW.Stoddart JF. Chem. Phys. 2006, 324: 280Reference Ris Wihthout Link - 4j
Stoddart JF. Pure Appl. Chem. 2005, 77: 1089Reference Ris Wihthout Link - 4k
Flood AH.Peters AJ.Vignon SA.Steuerman DW.Tseng H.-R.Kang S.Heath JR.Stoddart JF. Chem. Eur. J. 2004, 10: 6558Reference Ris Wihthout Link - 4l
Steuerman DW.Tseng H.-R.Peters AJ.Flood AH.Jeppesen JO.Nielsen KA.Stoddart JF.Health JR. Angew. Chem. In. Ed. 2004, 43: 6486Reference Ris Wihthout Link - For reviews, see:
- 5a Special issue on ‘Photochromism: Memories
and Switches’: Chem. Rev.
2000,
100:
1685-1890
Reference Ris Wihthout Link
- 5b
Feringa BL. Acc. Chem. Res. 2001, 34: 504Reference Ris Wihthout Link - For recent publications, see:
- 6a
Feringa BL.Delden RA.Wiel MKJ. Mol. Switches 2001, 123Reference Ris Wihthout Link - 6b
Oosterling MLCM.Schoevaars AM.Haitjema KJ.Feringa BL. Isr. J. Chem. 1997, 36: 341Reference Ris Wihthout Link - 6c
Feringa BL.Huck PM.Schoevaars AM. Adv. Mater. 1996, 8: 681Reference Ris Wihthout Link - 6d
Pijper D.Jongejan MGM.Meetsma A.Feringa BL. J. Am. Chem. Soc. 2008, 130: 4541Reference Ris Wihthout Link - 6e
Geertsema EM.Hoen R.Meetsma A.Feringa BL. Eur. J. Org. Chem. 2006, 16: 3596Reference Ris Wihthout Link - 6f
Feringa BL.Delden RA.Wiel MKJ. Pure Appl. Chem. 2003, 75: 563Reference Ris Wihthout Link - 6g
Van Delden RA.Ter Wiel MKJ.Feringa BL. Chem. Commun. 2004, 200Reference Ris Wihthout Link - 6h
Delden RA.Mecca T.Rosini C.Feringa BL. Chem. Europ. J. 2004, 10: 61Reference Ris Wihthout Link - 6i
Zheng J.Qiao W.Wan X.Gao JP.Wang ZY. Chem. Mater. 2008, 20: 6163Reference Ris Wihthout Link - 6j
Wang ZY.Todd EK.Meng XS.Gao JP. J. Am. Chem. Soc. 2005, 127: 11552Reference Ris Wihthout Link - 7a
Shinkai S.Ikeda M.Sugasaki A.Takeuchi M. Acc. Chem. Res. 2001, 34: 494Reference Ris Wihthout Link - 7b
Jiang X.Lim Y.-K.Zhang BJ.Opsitnick EA.Baik M.-H.Lee D. J. Am. Chem. Soc. 2008, 130: 16812Reference Ris Wihthout Link - 7c
Li Y.Wang T.Liu M. Soft Matter 2007, 3: 1312Reference Ris Wihthout Link - 7d
Qiu Y.Chen P.Guo P.Li Y.Liu M. Adv. Mater. 2008, 20: 2908Reference Ris Wihthout Link - 7e
Canary JW.Zahn S.Chiu Y.-H.Santos O.Liu J.Zhu L. Enantiomer 2000, 5: 397Reference Ris Wihthout Link - 8
Soloshonok VA.Ueki H.Moore JL.Ellis TK. J. Am. Chem. Soc. 2007, 129: 3512 - 9
Kawamoto T.Hammes BS.Haggerty B.Yap GPA.Rheingold AL.Borovik AS. J. Am. Chem. Soc. 1996, 118: 285 - 10
Hamuro Y.Geib SJ.Hamilton AD. Angew. Chem., Int. Ed. Engl. 1994, 33: 446 - 11
Preston AJ.Fraenkel G.Chow A.Gallucci JC.Parquette JR. J. Org. Chem. 2003, 68: 22 - 12
Ramalingam V.Domaradzki ME.Jang S.Muthyala RS. Org. Lett. 2008, 10: 3315 - 13a
Ueki H.Ellis TK.Martin CH.Soloshonok VA. Eur. J. Org. Chem. 2003, 1954Reference Ris Wihthout Link - 13b
Ueki H.Ellis TK.Martin CH.Bolene SB.Boettiger TU.Soloshonok VA. J. Org. Chem. 2003, 68: 7104Reference Ris Wihthout Link - 13c
Soloshonok VA.Cai C.Hruby VJ. Angew. Chem. In. Ed. 2000, 39: 2172Reference Ris Wihthout Link - 13d
Soloshonok VA.Cai C.Yamada T.Ueki H.Ohfune Y.Hruby VJ. J. Am. Chem. Soc. 2005, 127: 15296Reference Ris Wihthout Link - 13e
Soloshonok VA.Ueki H. J. Am. Chem. Soc. 2007, 129: 2426Reference Ris Wihthout Link - 13f
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron Lett. 2000, 41: 135Reference Ris Wihthout Link - 13g
Yamada T.Okada T.Sakaguchi K.Ohfune Y.Ueki H.Soloshonok VA. Org. Lett. 2006, 8: 5625Reference Ris Wihthout Link - 14a
Soloshonok VA.Belokon YN.Kuzmina NA.Maleev VI.Svistunova NY.Solodenko VA.Kukhar VP. J. Chem. Soc., Perkin Trans. 1 1992, 1525Reference Ris Wihthout Link - 14b
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron: Asymmetry 1999, 10: 4265Reference Ris Wihthout Link - 14c
Soloshonok VA.Avilov DV.Kukhar VP.Meervelt LV.Mischenko N. Tetrahedron Lett. 1997, 38: 4903Reference Ris Wihthout Link - 14d
Soloshonok VA.Avilov DV.Kukhar VP. Tetrahedron: Asymmetry 1996, 7: 1547Reference Ris Wihthout Link - 14e
Soloshonok VA.Avilov DV.Kukhar VP.Tararov VI.Saveleva TF.Churkina TD.Ikonnikov NS.Kochetkov KA.Orlova SA.Pysarevsky AP.Struchkov YT.Raevsky NI.Belokon YN. Tetrahedron: Asymmetry 1995, 6: 1741Reference Ris Wihthout Link - 14f
Soloshonok VA.Cai C.Hruby VJ. Org. Lett. 2000, 2: 747Reference Ris Wihthout Link - 15a
Soloshonok VA.Ueki H.Ellis TK. Tetrahedron Lett. 2005, 46: 941Reference Ris Wihthout Link - 15b
Soloshonok VA.Ueki H.Ellis TK.Yamada T.Ohfune Y. Tetrahedron Lett. 2005, 46: 1107Reference Ris Wihthout Link - 15c
Soloshonok VA.Ellis TK. Synlett 2006, 533Reference Ris Wihthout Link - 15d
Soloshonok VA.Ueki H.Ellis TK. Chim. Oggi/Chem. Today 2008, 26: 51Reference Ris Wihthout Link - 15e
Yamada T.Sakaguchi K.Shinada T.Ohfune Y.Soloshonok VA. Tetrahedron: Asymmetry 2008, 19: 2789Reference Ris Wihthout Link - 15f
Soloshonok VA.Ueki H.Ellis TK. Synlett 2009, 704Reference Ris Wihthout Link - 16
Ellis TK.Ueki H.Yamada T.Ohfune Y.Soloshonok VA. J. Org. Chem. 2006, 71: 8572 - 17
Moore JL.Taylor SM.Soloshonok VA. ARKIVOC 2005, (vi): 287
References
We could not find in the literature the corresponding priority rules which exactly state that the coordinated element has higher priority over the noncoordinated equivalent.