Synthesis 2009(21): 3694-3707  
DOI: 10.1055/s-0029-1216980
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Structure Elucidation and Enantioselective Total Synthesis of the HMG-CoA Reductase Inhibitors FR901512 and FR901516

Masahiro Inoue, Masahisa Nakada*
Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
Fax: +81(3)52863240; e-Mail: mnakada@waseda.jp;
Further Information

Publication History

Received 24 June 2009
Publication Date:
28 August 2009 (online)

Abstract

The enantioselective total synthesis of the potent HMG-CoA reductase inhibitors FR901512 (1) and FR901516 (2) is reviewed. FR901512 was prepared in 15 steps from commercially available compound via 2 in 16.3% overall yield (89% average yield). This study validated the applicability and reliability of the catalytic asymmetric Nozaki-Hiyama reactions that were developed by us. These reactions enabled the concise, efficient, and protecting-group-free enantioselective total syntheses of these new statins.

    References

  • 1a Hatori H. Sato B. Sato I. Shibata T. Tsurumi Y. Sakamoto K. Takase S. Ueda H. Hino M. Fujii T. J. Antibiot.  2004,  57:  264 
  • 1b Hatori H. Sato B. Sato I. Shibata T. Ueda H. Hino M. Fujii T. J. Antibiot.  2004,  57:  390 
  • 2a Endo A. J. Lipid Res.  1992,  33:  1569 
  • 2b Tobert JA. Nat. Rev. Drug Discovery  2003,  2:  517 
  • 2c Statins: The HMG CoA Reductase Inhibitors in Perspective   2nd ed.:  Gaw A. Packard CJ. Shepherd J. Martin Dunitz; London: 2004. 
  • To the best of our knowledge, 1 and 2 are the first naturally occurring statins found to possess a tetralin core. Total syntheses of statins incorporating a hexalin core or an octalin core have been reported. For an early review, see:
  • 3a Rosen T. Heathcock CH. Tetrahedron  1986,  42:  4909 
  • For a recent total synthesis of (+)-dihydrocompactin, see:
  • 3b Sammakia T. Johns DM. Kim G. Berliner MA. J. Am. Chem. Soc.  2005,  127:  6504 
  • 4 Inoue M. Nakada M. J. Am. Chem. Soc.  2007,  129:  4164 
  • 5a Inoue M. Suzuki T. Nakada M. J. Am. Chem. Soc.  2003,  125:  1140 
  • 5b Suzuki T. Kinoshita A. Kawada H. Nakada M. Synlett  2003,  570 
  • 5c Inoue M. Nakada M. Org. Lett.  2004,  6:  2977 
  • 5d Inoue M. Nakada M. Angew. Chem. Int. Ed.  2006,  45:  252 
  • 5e Inoue M. Nakada M. Heterocycles  2007,  72:  133 
  • 5f Inoue M. Suzuki T. Kinoshita A. Nakada M. Chem. Rec.  2008,  8:  169 
  • 6a Vollhardt KPC. Angew. Chem., Int. Ed. Engl.  1984,  23:  539 
  • See also:
  • 6b Lautens M. Klute W. Tam W. Chem. Rev.  1996,  96:  49 
  • 6c Saito S. Yamamoto Y. Chem. Rev.  2000,  100:  2901 
  • 7 Yamamoto Y. Nagata A. Itoh K. Tetrahedron Lett.  1999,  40:  5035 
  • 8 Takeuchi R. Tanaka S. Nakaya Y. Tetrahedron Lett.  2001,  42:  2991 
  • 9a Sato Y. Ohashi K. Mori M. Tetrahedron Lett.  1999,  40:  5231 
  • 9b Sato Y. Tamura T. Mori M. Angew. Chem. Int. Ed.  2004,  43:  2436 
  • 10 Trnka TM. Grubbs RH. Acc. Chem. Res.  2001,  34:  18 
  • 11 Jolad SD. Rajagopal S. Org. Synth., Coll. Vol. V  1973,  139 
  • 12 Wu X. Nilsson P. Larhed M. J. Org. Chem.  2005,  70:  346 
  • 14 Crabtree RH. Morris GE. J. Organomet. Chem.  1977,  135:  395 
  • 15a Katsuura K. Snieckus V. Can. J. Chem.  1987,  65:  124 
  • 15b Loh TP. Hu QY. Org. Lett.  2001,  3:  279 
  • 17 Nicolaou KC. Daines RA. Uenishi J. Li WS. Papahatjis DP. Chakraborty TK. J. Am. Chem. Soc.  1988,  110:  4672 
  • 18a Nagata W. Hayase Y. J. Chem. Soc. C  1969,  460 
  • 18b Friese A. Hell-Momeni K. Zündorf I. Winckler T. Dingermann T. Dannhardt G. J. Med. Chem.  2002,  45:  1535 
  • 19 Grubbs RH. Chang S. Tetrahedron  1998,  54:  4413 
  • 20 For the precedent synthesis of the β-hydroxy-δ-lactone moiety, see: Ghosh AK. Lei H. J. Org. Chem.  2000,  65:  4779 
  • 21 Miyashita M. Suzuki T. Hoshino M. Yoshikoshi A. Tetrahedron  1997,  53:  12469 
13

The use of ent-12 afforded ent-34 accordingly.

16

CCDC 647745 contains the supplementary crystallographic data (excluding structure factors) for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

22

The specific rotation of 2 {[α]D ²5 -8.4 (c 0.35, MeOH)} differed significantly from the reported value {Lit.¹a [α]D ²³ -16 (c 0.40, MeOH)}. However, we soon found out that this difference was due to the methanolysis of 2 during the measurement of the specific rotation. That is, δ-lactone 2 was converted into the methyl ester of 1 by its reaction with MeOH, which was used as the solvent.