RSS-Feed abonnieren
DOI: 10.1055/s-0029-1216653
Isoureas: Versatile Alkylation Reagents in Organic Chemistry
Publikationsverlauf
Publikationsdatum:
07. Mai 2009 (online)
Biographical Sketches

Introduction
The name of isoureas (alternatively named pseudoureas) derives from their isomeric relationship to ureas. However, their chemical reactivities are much different to that of ureas. Isoureas are important, sometimes commercial reagents in organic chemistry, mainly being used as alkylation reagents in esterification, etherification and in the synthesis of alkyl halides, etc. Isoureas can be conveniently prepared from alcohol and N,N-dialkyl carbodiimide. In most cases, the alkyl group is cyclohexyl or isopropyl. A typical procedure is as following: a mixture of alcohol, DIC and Cu(OTf)2/CuCl was stirred for 1 h at room temperature. The progress of the reaction can be monitored by IR spectroscopy by the disappearance of diimide absorption at 2100 cm-¹ and the appearance of isourea absorption at 1660 cm-¹. Pure isoureas can be obtained after column chromatography or distillation. [¹]

Scheme 1
Abstracts
|  | |||||||||||||||||||
| (A) The
               reaction of O-alkyl isoureas with carboxylic
               acids affords the corresponding esters.
               [²]
                Even
               though ester can be conveniently prepared by a one-pot reaction
               from carboxylic acid, alcohol and carbodiimide. The method via O-alkyl isourea provides an inversion of
               the alkyl configuration in case of a chiral one.
               [³]
                S-alkyl
               thioate can be obtained from thioic S-acid.
               [4] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (B) The
               reaction of polymer-supported O-methyl, O-benzyl, and O-allyl
               isoureas with carboxylic acids provides the corresponding alkyl
               esters in high yields and purity. The reaction can be finished in
               3 to 5 minutes with microwave heating, without compromising yield,
               purity, or chemoselectivity.
               [5] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (C) Phosphate
               esters could be obtained via the reaction of O-alkyl isoureas
               with phosphoric acid.
               [6] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (D) O-alkyl
               isoureas can be efficiently converted into alkyl bromides
               and iodides by treatment with one mol equivalent of trifluoromethanesulphonic
               acid in the presence of an excess of tetrabutylammonium bromide
               or iodide. The conversion can be performed either with
               the pure isolated O-alkyl isourea or
               with crude isourea without detriment to yield.
               [7] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (E) Linclau
               and co-workers reported that primary and secondary alcohols
               were converted into the corresponding alkyl halide via the corresponding O-alkyl isoureas. High yields could be
               obtained in the case of chlorides and bromides. This method tolerates
               a range of functional groups and does not rely on the use of phosphines.
               [8] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (F) Linclau
               also reported that N-(β-hydroxy)amides
               could be cyclized with diisopropylcarbodiimide (DIC) to
               give the corresponding 2-oxazolines in high yields. The reaction
               requires only very mild Lewis acid catalysis [5mol% Cu(OTf)2] and
               can be accomplished with conventional heating or under microwave
               irradiation.
               [9] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (G) The
               reaction of O-alkyl isoureas with N-acylsulfonamide gave the N-alkylated
               products. The reaction can be carried out with polymer-bound sulfonamide.
               [¹0] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (H) Phenol
               ether and thiophenolether can be prepared via the reaction of O-alkyl isoureas with phenol and thiophenol,
               respectively.
               [¹¹]
               
               
               [¹²] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (I) O-alkyl isoureas were reported as allyl
               reagents in C-C bond formation reactions in the presence
               of a palladium catalyst.
               [¹³] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (J) The
               dehydration of secondary, tertiary and benzylic alcohols could be
               carried out in good yield in the presence of carbodiimide and catalytic
               amount of CuCl. It is believed that the reaction proceeds via O-alkyl isourea intermediates.
               [¹4] |  | ||||||||||||||||||
|  | |||||||||||||||||||
| (K) 2-Allyl isourea acts
               as a starting material for palladium-catalyzed Wittig-type
               allylidenation of aldehydes to give the corresponding
               conjugated olefins in moderate to good yields.
               [¹5] |  | ||||||||||||||||||
- 1a 
             
            Mathias LJ.Fuller WD.Nissen D.Goodman M. Macromolecules 1978, 11: 534Reference Ris Wihthout Link
- 1b 
             
            Mathias LJ. Synthesis 1979, 561Reference Ris Wihthout Link
- 2 
             
            Fraga-Dubreuil J.Bazureau JP. Tetrahedron Lett. 2001, 42: 6097
- 3 
             
            Vowinkel E. Chem. Ber. 1967, 100: 16
- 4 
             
            Nowicki T.Markowska A.Kie P.basinski Miko M. Synthesis 1986, 305ajczyk 
- 5a 
             
            Crosignani S.White PD.Steinauer R.Linclau B. Org. Lett. 2003, 5: 853Reference Ris Wihthout Link
- 5b 
             
            Crosignani S.White PD.Linclau B. J. Org. Chem. 2004, 69: 5897Reference Ris Wihthout Link
- 6 
             
            Pícha J.Buděínsk M.anda M.Jiráček J. Tetrahedron Lett. 2008, 49: 4366
- 7 
             
            Collingwood SP.Davies AP.Golding BT. Tetrahedron Lett. 1987, 28: 4445
- 8 
             
            Li Z.Crosignani S.Linclau B. Tetrahedron Lett. 2003, 44: 8143
- 9 
             
            Crosignani S.Young AC.Linclau B. Tetrahedron Lett. 2004, 45: 9611
- 10 
             
            Zohrabi-Kalantari V.Heidler P.Larsen T.Link A. Org. Lett. 2005, 7: 5665
- 11 
             
            Jaeger R. Synthesis 1991, 465
- 12 
             
            Poelert MA.Hulshof LA.Kellog RM. Recueil Trav. Chim. Pays-Bas. 1994, 113: 365
- 13 
             
            Inoue Y.Toyofuku M.Taguchi M.Okada S.Hashimoto H. Bull. Chem. Soc. Jpn. 1986, 59: 885
- 14a 
             
            Majetich G.Hicks R.Okha F. New. J. Chem. 1999, 129Reference Ris Wihthout Link
- 14b 
             
            Robben U.Lindner I.Gaertner W. J. Am. Chem. Soc. 2008, 130: 11303Reference Ris Wihthout Link
- 15 
             
            Inoue Y.Toyofuku M.Hashimoto H. Bull. Chem. Soc. Jpn. 1986, 59: 1279
References
- 1a 
             
            Mathias LJ.Fuller WD.Nissen D.Goodman M. Macromolecules 1978, 11: 534Reference Ris Wihthout Link
- 1b 
             
            Mathias LJ. Synthesis 1979, 561Reference Ris Wihthout Link
- 2 
             
            Fraga-Dubreuil J.Bazureau JP. Tetrahedron Lett. 2001, 42: 6097
- 3 
             
            Vowinkel E. Chem. Ber. 1967, 100: 16
- 4 
             
            Nowicki T.Markowska A.Kie P.basinski Miko M. Synthesis 1986, 305ajczyk 
- 5a 
             
            Crosignani S.White PD.Steinauer R.Linclau B. Org. Lett. 2003, 5: 853Reference Ris Wihthout Link
- 5b 
             
            Crosignani S.White PD.Linclau B. J. Org. Chem. 2004, 69: 5897Reference Ris Wihthout Link
- 6 
             
            Pícha J.Buděínsk M.anda M.Jiráček J. Tetrahedron Lett. 2008, 49: 4366
- 7 
             
            Collingwood SP.Davies AP.Golding BT. Tetrahedron Lett. 1987, 28: 4445
- 8 
             
            Li Z.Crosignani S.Linclau B. Tetrahedron Lett. 2003, 44: 8143
- 9 
             
            Crosignani S.Young AC.Linclau B. Tetrahedron Lett. 2004, 45: 9611
- 10 
             
            Zohrabi-Kalantari V.Heidler P.Larsen T.Link A. Org. Lett. 2005, 7: 5665
- 11 
             
            Jaeger R. Synthesis 1991, 465
- 12 
             
            Poelert MA.Hulshof LA.Kellog RM. Recueil Trav. Chim. Pays-Bas. 1994, 113: 365
- 13 
             
            Inoue Y.Toyofuku M.Taguchi M.Okada S.Hashimoto H. Bull. Chem. Soc. Jpn. 1986, 59: 885
- 14a 
             
            Majetich G.Hicks R.Okha F. New. J. Chem. 1999, 129Reference Ris Wihthout Link
- 14b 
             
            Robben U.Lindner I.Gaertner W. J. Am. Chem. Soc. 2008, 130: 11303Reference Ris Wihthout Link
- 15 
             
            Inoue Y.Toyofuku M.Hashimoto H. Bull. Chem. Soc. Jpn. 1986, 59: 1279
References

Scheme 1











 
    