RSS-Feed abonnieren
DOI: 10.1055/s-0028-1088203
Thieme Chemistry Journal Awardees - Where are They Now? Phosphine- and Water-Cocatalyzed [3+2] Cycloaddition Reactions of 2-Methyl-2,3-butadienoate with Fumarates: A Computational and Experimental Study
Publikationsverlauf
Publikationsdatum:
16. März 2009 (online)

Abstract
With the aid of computation and experiment, the phosphine- and water-cocatalyzed [3+2] cycloaddition reactions of 2-methyl-2,3-butadienoate with fumarates have been developed. In this reaction, 2-methyl-2,3-butadienoate is used as a three-carbon synthon generated through a water-catalyzed [1,4]-proton-shift process. The DFT calculations and isotopic labeling experiment have been done to explore how this [3+2] reaction occurs.
Key words
phosphine - water - organocatalysis - density functional calculations - reaction mechanisms
- 1a
Zhang C.Lu X. J. Org. Chem. 1995, 60: 2906Reference Ris Wihthout Link - 1b
Xu Z.Lu X. Tetrahedron Lett. 1997, 38: 3461Reference Ris Wihthout Link - 1c
Xu Z.Lu X. J. Org. Chem. 1998, 63: 5031Reference Ris Wihthout Link - 1d
Xu Z.Lu X. Tetrahedron Lett. 1999, 40: 549Reference Ris Wihthout Link - For reviews on phosphine-catalyzed reactions, see:
- 2a
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535Reference Ris Wihthout Link - 2b
Methot JL.Roush WR. Adv. Synth. Catal. 2004, 346: 1035Reference Ris Wihthout Link - 2c
Lu X.Du Y.Lu C. Pure Appl. Chem. 2005, 77: 1985Reference Ris Wihthout Link - 2d
Ye L.-W.Zhou J.Tang Y. Chem. Soc. Rev. 2008, 37: 1140Reference Ris Wihthout Link - Further elegant developments and extensions of the chemistry based on phosphine organocatalysis have been reported by many other groups. For selected recent examples, see:
- 3a
Kamijo S.Kanazawa C.Yamamoto Y. J. Am. Chem. Soc. 2005, 127: 9260Reference Ris Wihthout Link - 3b
Zhu X.-F.Henry CE.Wang J.Dudding T.Kwon O. Org. Lett. 2005, 7: 1387Reference Ris Wihthout Link - 3c
Du Y.Feng J.Lu X. Org. Lett. 2005, 7: 1987Reference Ris Wihthout Link - 3d
Zhu X.-F.Schaffner A.-P.Li RC.Kwon O. Org. Lett. 2005, 7: 2977Reference Ris Wihthout Link - 3e
Tran YS.Kwon O. Org. Lett. 2005, 7: 4289Reference Ris Wihthout Link - 3f
Pham TQ.Pyne SG.Skelton BW.White AH. J. Org. Chem. 2005, 70: 6369Reference Ris Wihthout Link - 3g
Wilson JE.Fu GC. Angew. Chem. Int. Ed. 2006, 45: 1426Reference Ris Wihthout Link - 3h
Nair V.Biju AT.Mohanan K.Suresh E. Org. Lett. 2006, 8: 2213Reference Ris Wihthout Link - 3i
Dudding T.Kwon O.Mercier E. Org. Lett. 2006, 8: 3643Reference Ris Wihthout Link - 3j
Castellano S.Fiji HDG.Kinderman SS.Watanabe M.de Leon P.Tamanoi F.Kwon O. J. Am. Chem. Soc. 2007, 129: 5843Reference Ris Wihthout Link - 3k
Zhu X.-F.Henry CE.Kwon O. J. Am. Chem. Soc. 2007, 129: 6722Reference Ris Wihthout Link - 3l
Cowen BJ.Miller SJ. J. Am. Chem. Soc. 2007, 129: 10988Reference Ris Wihthout Link - 3m
Ye L.-W.Sun X.-L.Wang Q.-G.Tang Y. Angew. Chem. Int. Ed. 2007, 46: 5951Reference Ris Wihthout Link - 3n
Henry CE.Kwon O. Org. Lett. 2007, 9: 3069Reference Ris Wihthout Link - 3o
Wallace DJ.Sidda RL.Reamer RA. J. Org. Chem. 2007, 72: 1051Reference Ris Wihthout Link - 3p
Fang Y.-Q.Jacobsen EN. J. Am. Chem. Soc. 2008, 130: 5660Reference Ris Wihthout Link - 3q
Creech GS.Zhu X.-F.Fonovic B.Dudding T.Kwon O. Tetrahedron 2008, 64: 6935Reference Ris Wihthout Link - 3r
Panossian A.Fleury-Bregeot N.Marinetti A. Eur. J. Org. Chem. 2008, 3826Reference Ris Wihthout Link - 4a
Xia Y.Liang Y.Chen Y.Wang M.Jiao L.Huang F.Liu S.Li Y.Yu Z.-X. J. Am. Chem. Soc. 2007, 129: 3470Reference Ris Wihthout Link - 4b
Liang Y.Liu S.Xia Y.Li Y.Yu Z.-X. Chem. Eur. J. 2008, 14: 4361Reference Ris Wihthout Link - Selected examples for 2-methylallenoate used as a two-carbon synthon, see:
- 6a
Padwa A.Matzinger M.Tomioka Y.Venkatramanan MK. J. Org. Chem. 1988, 53: 955Reference Ris Wihthout Link - 6b
Kumar K.Kapur A.Ishar MPS. Org. Lett. 2000, 2: 787Reference Ris Wihthout Link - 6c
Ishar MPS.Kapur A.Raj T.Girdhar NK.Kaur A. Synthesis 2004, 775Reference Ris Wihthout Link - 6d
Jung ME.Nishimura N.Novack AR. J. Am. Chem. Soc. 2005, 127: 11206Reference Ris Wihthout Link - 6e
Zhao G.-L.Shi Y.-L.Shi M. Org. Lett. 2005, 7: 4527Reference Ris Wihthout Link - Examples for 2-methylallenoate used as a four-carbon synthon, see:
- 7a
Zhu X.-F.Lan J.Kwon O. J. Am. Chem. Soc. 2003, 125: 4716Reference Ris Wihthout Link - 7b
Wurz RP.Fu GC. J. Am. Chem. Soc. 2005, 127: 12234Reference Ris Wihthout Link - 7c
Tran YS.Kwon O. J. Am. Chem. Soc. 2007, 129: 12632Reference Ris Wihthout Link - 8
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03 (Revision C.02) Gaussian Inc.; Wallingford CT: 2004.Reference Ris Wihthout Link - 9a
Becke AD. J. Chem. Phys. 1993, 98: 5648Reference Ris Wihthout Link - 9b
Lee C.Yang W.Parr RG. Phys. Rev. B 1988, 37: 785Reference Ris Wihthout Link - 10
Hehre WJ.Radom L.Schleyer P.v.R.Pople JA. Ab Initio Molecular Orbital Theory Wiley; New York: 1986.Reference Ris Wihthout Link - 11a
Barone V.Cossi M. J. Phys. Chem. A 1998, 102: 1995Reference Ris Wihthout Link - 11b
Cossi M.Rega N.Scalmani G.Barone V. J. Comput. Chem. 2003, 24: 669Reference Ris Wihthout Link - 11c
Takano Y.Houk KN. J. Chem. Theory Comput. 2005, 1: 70Reference Ris Wihthout Link - For discussions on entropy overestimation in solution, see:
- 13a
Hermans J.Wang L. J. Am. Chem. Soc. 1997, 119: 2707Reference Ris Wihthout Link - 13b
Amzel LM. Proteins 1997, 28: 144Reference Ris Wihthout Link - 13c
Strajbl M.Sham YY.Villa J.Chu Z.-T.Warshel A. J. Phys. Chem. B 2000, 104: 4578Reference Ris Wihthout Link - 13d
Yu Z.-X.Houk KN. J. Am. Chem. Soc. 2003, 125: 13825Reference Ris Wihthout Link - 13e
Chen Y.Ye S.Jiao L.Liang Y.Sinha-Mahapatra DK.Herndon JW.Yu Z.-X. J. Am. Chem. Soc. 2007, 129: 10773Reference Ris Wihthout Link
References and Notes
In the revision of this paper, we repeated reaction (c) (Scheme [²] ) twice. It was found that 3-CH2D-substituted [3+2] product was generated with a ratio of 44% and 38%, respectively. The 3-Me-substituted [3+2] product was formed through the catalysis of DOH (generated in the reaction) and H2O (generated and residual water in the reaction system). Therefore, it is reasonable for the observed deuterated ratio of about 40%.
12Although the generation of zwitterion 13 is endergonic by 17.5 kcal mol-¹ in
terms of free energy in benzene, the computed enthalpy and the free
energy for the whole
[3+2] reaction
in benzene is -39.6 and -25.8 kcal mol-¹, respectively.
General Procedure
for the Ph
3
P-
and H
2
O-Cocatalyzed [3+2] Reaction
To
a mixture of the fumarate (1 mmol), Ph3P (0.5 mmol),
and H2O (1 mmol) in toluene (5 mL) was added via syringe under
nitrogen methyl 2-methylallenoate (0.5 mmol). After stirring at
90 ˚C for 12 h, the solvent was removed under reduced pressure,
and the residue was purified by flash chromatography on SiO2 to
yield the product.
trans
-Trimethyl 3-Methylcyclopent-3-ene-1,2,4-tricarboxylate
(3)
Colorless oil; R
f
= 0.27
(PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 2.13
(m, 3 H), 2.90 (ddm, J = 16.5,
6.6 Hz, 1 H), 3.08 (ddm, J = 16.5,
9.6 Hz, 1 H), 3.50 (dt, J = 9.6, 6.6
Hz, 1 H), 3.72 (s, 3 H), 3.74 (s, 3 H), 3.77 (s, 3 H), 3.96 (dm, J = 6.6 Hz,
1 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 14.8,
36.0, 43.4, 51.3, 52.3, 52.4, 59.1, 128.2, 149.7, 165.3, 172.3,
174.0. IR: ν = 1717, 1735 cm
-¹.
MS (EI): m/z (%) = 256
(5) [M+], 224 (63), 196 (76),
164 (100). HRMS: m/z calcd for
C12H16O6: 256.0947; found: 256.0950.
trans
-1,2-Diethyl-4-methyl
3-Methylcyclopent-3-ene-1,2,4-tricarboxylate (5)
Colorless
oil; R
f
= 0.37
(PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 1.27
(t, J = 7.2
Hz, 3 H), 1.30 (t, J = 7.2 Hz,
3 H), 2.14 (m, 3 H), 2.88 (ddm, J = 16.5,
6.6 Hz, 1 H), 3.08 (ddm, J = 16.5,
9.6 Hz, 1 H), 3.48 (dt, J = 9.6,
6.6 Hz, 1 H), 3.74 (s, 3 H), 3.93 (dm, J = 6.6
Hz, 1 H), 4.14-4.27 (m, 4 H). ¹³C
NMR (75.5 MHz, CDCl3): δ = 14.09, 14.15,
14.8, 35.9, 43.5, 51.2, 59.3, 61.0, 61.3, 128.1, 149.9, 165.4, 171.8, 173.6.
IR: ν = 1717, 1732
cm-¹. MS (EI): m/z (%) = 284
(6) [M+], 252 (13), 238 (53),
210 (100). HRMS: m/z calcd for C14H20O6:
284.1260; found: 284.1257.
trans
-1,2-Diallyl-4-methyl 3-Methylcyclopent-3-ene-1,2,4-tricarboxylate
(7)
Colorless oil; R
f
= 0.36
(PE-EtOAc, 6:1). ¹H NMR (300 MHz, CDCl3): δ = 2.14
(m, 3 H), 2.91 (ddm, J = 16.5,
6.6 Hz, 1 H), 3.10 (ddm, J = 16.5,
9.6 Hz, 1 H), 3.54 (dt, J = 9.6, 6.6
Hz, 1 H), 3.74 (s, 3 H), 3.99 (dm, J = 6.6
Hz, 1 H), 4.60-4.67 (m, 4 H), 5.23-5.39 (m, 4
H), 5.85-6.00 (m, 2 H). ¹³C NMR
(75.5 MHz, CDCl3): δ = 14.8, 35.9,
43.5, 51.3, 59.2, 65.6, 65.9, 118.4, 118.8, 128.2, 131.5, 131.7,
149.7, 165.3, 171.4, 173.2. IR: ν = 1717,
1733 cm-¹. MS (EI): m/z (%) = 308
(3) [M+], 276 (5), 250 (20),
222 (18), 41 (100). HRMS: m/z calcd
for C16H20O6: 308.1260; found:
308.1252.