References and Notes
<A NAME="RG00209ST-1">1</A>
del Buttero P.
Maiorana S.
Pocar D.
Andrietti GD.
Bocelli G.
Sgarabotto P.
J. Chem. Soc., Perkin Trans.
2
1974,
1483
<A NAME="RG00209ST-2">2</A>
Claus PK.
Jager E.
Monatsh. Chem.
1985,
116:
1153
<A NAME="RG00209ST-3">3</A>
Butkevich AN.
Sokolov VV.
Tomashevskii AA.
Potekhin AA.
Chem.
Heterocycl. Compd.
2007,
43:
544
<A NAME="RG00209ST-4">4</A>
Miknis EP.
Biscar JP.
J. Phys. Chem.
1971,
75:
725
<A NAME="RG00209ST-5">5</A>
Zhang J.-X.
Ni J.
Ren X.-J.
Sun L.
Zhang Z.-B.
Wang Z.-W.
Chem. Sens.
2003,
28:
381
<A NAME="RG00209ST-6">6</A>
Crump DR.
J.
Chem. Ecol.
1980,
16:
341
<A NAME="RG00209ST-7">7</A>
Ohno A,
Ohnishi Y, and
Tsuchihashi G. inventors; US 3779880.
<A NAME="RG00209ST-8">8</A>
Haucourt NH.
Peng L.
Goethals EJ.
Macromolecules
1994,
27:
1329
<A NAME="RG00209ST-9">9</A>
Adams RD.
Acc.
Chem. Res.
2000,
33:
171
<A NAME="RG00209ST-10">10</A>
Richardson SK.
Howell AR.
Synthesis
2007,
2755
<A NAME="RG00209ST-11">11</A>
Dejaegher Y.
Kuz’menok NM.
Zvonok AM.
De Kimpe N.
Chem.
Rev.
2002,
102:
29
<A NAME="RG00209ST-12">12</A>
Dittmer DC.
Sedergran TC.
Small
Ring Heterocycles, In The Chemistry of
Heterocyclic Compounds
Part 3, Vol. 42:
Hassner A.
Wiley-Interscience;
New
York:
1985.
p.431-474
<A NAME="RG00209ST-13">13</A>
Friedel MG.
Cichon MK.
Carell T.
Org.
Biomol. Chem.
2005,
3:
1937
<A NAME="RG00209ST-14">14</A>
Farzaliev VM.
Allakhvendiev MA.
Magerramov
AM.
Shirinova NA.
Dzhavadova LA.
Rzaeva IA.
Khalilova AZ.
Aliev FY.
Russ. J. Appl. Chem.
2001,
74:
114
<A NAME="RG00209ST-15">15</A>
Volynskii NP.
Shevchenko SE.
Petroleum Chemistry
2007,
47:
109
<A NAME="RG00209ST-16">16</A>
Ager DJ.
Pentaleon DP.
Henderson SA.
Katritzky
AR.
Prakash I.
Walters E.
Angew.
Chem. Int. Ed.
1998,
37:
1802
<A NAME="RG00209ST-17">17</A>
Searles S.
Hays H.
Lutz E.
J.
Org. Chem.
1962,
27:
2828
<A NAME="RG00209ST-18">18</A>
Lancaster M.
Smith JH.
Synlett
1982,
582
<A NAME="RG00209ST-19">19</A>
Nagasawa K.
Yoneta A.
Chem. Pharm. Bull.
1985,
33:
5048
<A NAME="RG00209ST-20">20</A>
Schaal C.
Bull.
Soc. Chim. Fr.
1971,
3064
<A NAME="RG00209ST-21">21</A>
Sander M.
Chem.
Rev.
1996,
66:
341
<A NAME="RG00209ST-22">22</A>
Ueno Y.
Yadav LDS.
Okawara M.
Synthesis
1981,
547
<A NAME="RG00209ST-23">23</A>
Yadav LDS.
Kapoor R.
Synthesis
2002,
1502
<A NAME="RG00209ST-24">24</A>
Yadav LDS.
Vaish A.
J. Chem. Res.,
Synop.
1997,
90
<A NAME="RG00209ST-25">25</A>
Yadav LDS.
Sharma S.
Synthesis
1993,
864
<A NAME="RG00209ST-26">26</A>
Cai J.
Zhou Z.
Zhao G.
Tang C.
Org.
Lett.
2002,
4:
4723
<A NAME="RG00209ST-27">27</A>
General Procedure
for the Synthesis of Functionalized Thietanes 4
To
a solution of O,O-diethyl
hydrogen phosphorodithioate (1, 5 mmol)
in dry benzene (5 mL) was added dropwise a suspension of NaH (120
mg, 5 mmol) in dry benzene (10 mL) with stirring at r.t. After the
addition was complete, and evolution of hydrogen gas(effervescence)
had ceased, the reaction mixture was stirred at 60 ˚C for
30 min and then cooled to r.t. Next, a solution of activated olefin 2 (5 mmol) in dry benzene (5 mL) was added,
and the reaction mixture was stirred at r.t. for 1 h followed by
the addition of aldehyde 3 (5 mmol) and
stirring at r.t. for 2-5 h (Table
[¹]
). Water (20 mL) was added,
the mixture was extracted with Et2O (3 × 20 mL),
dried over anhyd MgSO4, filtered, and evaporated under
reduced pressure. The crude product thus obtained was purified by
SiO2 chromatography (hexane-EtOAc, 95:5) to
afford an analytically pure sample of 4.
Characterization Data of Representative Compounds
Product 4 (entry 1, EWG = CN,
Ar = Ph):²8 white
solid; yield 87%; mp 47-48 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS):²8 δ = 3.20
(dd, 1 H, J = 2.8,
11.6 Hz), 3.55 (dd, 1 H, J = 7.6,
11. 6 Hz), 4.12 (ddd, 1 H, J = 2.8,
7.6, 8.8 Hz), 4.50 (d,1 H, J = 8.8
Hz), 7.32-7.70 (m, 5 H). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 25.9,
30.9, 42.4, 119.0, 122.2, 126.0, 127.1, 134.5. MS (EI): m/z = 175 [M+].
Anal. Calcd for C10H9NS: C, 68.53; H, 5.18;
N, 7.99. Found: 68.21; H, 5.43; N, 8.34.
Product 4 (entry 6, EWG = CN,
Ar = 4-MeOC6H4):
white solid; yield 88%; mp 51-52 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 3.22
(dd,1 H, J = 2.8,
11.6 Hz), 3.56 (dd, 1 H, J = 7.6,
11.6 Hz), 3.64 (s, 3 H), 4.13 (ddd, 1 H, J = 2.8,
7.6, 8.8 Hz), 4.52 (d, 1 H, J = 8.8
Hz), 7.37-7.79 (m, 4 H). ¹³C NMR
(100 MHz, CDCl3/TMS): δ = 25.8,
30.6, 42.6, 119.0, 122.3, 126.2, 127.0, 134.3, 156.0 MS (EI): m/z = 205 [M+]. Anal.
Calcd for C11H11NOS: C, 64.36; H, 5.40; N,
6.82. Found: C, 64.74; H, 5.70; N, 7.15
Product 4 (entry 7, EWG = COOMe,
Ar = Ph).²8 white
solid; yield 86%; mp 38-39 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 3.24
(dd, 1 H, J = 2.9,
11.5 Hz), 3.58 (dd, 1 H, J = 7.7, 11.5
Hz), 3.84 (s, 3 H), 4.14 (ddd, 1 H, J = 2.9,
7.7, 8.9 Hz), 4.54 (d, 1 H, J = 8.9
Hz), 7.38-7.80 (m, 5 H); there are differences between
the spectral data of compounds 4 (enteries
1 and 7) in this paper and the reference paper (ref. 28). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 25.8,
45.0, 49.2, 53.0, 126.0, 127.1, 128.9, 137.5, 170.1. MS (EI): m/z = 208 [M+].
Anal. Calcd for C11H12O2S: C, 63.43;
H, 5.81. Found: C, 63.80; H, 5.48.
Product 4 (entry
12, EWG = COOMe, Ar = 4-MeOC6H4): white
solid; yield 85%; mp 42-43 ˚C. ¹H
NMR (400 MHz, CDCl3/TMS): δ = 3.26
(dd, 1 H, J = 2.9,
11.5 Hz), 3.59 (dd, 1 H, J = 7.7,
11. 5 Hz), 3.70 (s, 3 H), 3.86 (s, 3 H), 4.15 (ddd, 1 H, J = 2.9, 7.7,
8.9 Hz), 4.53 (d, 1 H, J = 8.9
Hz), 7.39-7.89 (m, 4 H). ¹³C
NMR (100 MHz, CDCl3/TMS): δ = 25.7, 45.3,
49.1, 53.2, 126.1, 127.0, 128.7, 137.5, 156.9, 170.2. MS (EI): m/z = 238 [M+].
Anal. Calcd for C12H14O3S: C, 60.48;
H, 5.92.Found: C, 60.72; H, 6.24.
<A NAME="RG00209ST-28">28</A>
Bonini BF.
Franchini MC.
Fochi M.
Mazzanti G.
Ricci A.
Zani P.
Zwanenburg B.
J.
Chem. Soc., Perkin Trans. 1
1995,
2039