Synlett 2008(20): 3188-3192  
DOI: 10.1055/s-0028-1087411
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Pyrrolo[1,2-b]isoquinolines through Mesityllithium-Mediated Intramolecular Carbolithiation

Sergio Lage, Irune Villaluenga, Nuria Sotomayor, Esther Lete*
Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Apdo. 644, 48080 Bilbao, Spain
e-Mail: esther.lete@ehu.es;
Further Information

Publication History

Received 5 August 2008
Publication Date:
26 November 2008 (online)

Abstract

Mesityllithium has proven to be an effective iodine-lithium exchange reagent. Thus, carbolithiation reactions on 2-alkenyl-substituted N-(o-iodobenzyl)pyrroles have been accomplished avoiding side reactions to afford pyrroloisoquinolines in high yields (80-92%), improving the results obtained with t-BuLi. The carbolithiation reaction requires the use of electron-deficient alkenes. Mesityllithium has also been studied as an alternative to t-BuLi in Parham cyclization with other internal electrophiles (aldehyde, ketone, ester, amide), proving to be more selective and efficient than t-BuLi.

    References and Notes

  • 1a Wakefield BJ. The Chemistry of Organolithium Compounds   2nd ed.:  Pergamon; New York: 1990. 
  • 1b Rappoport Z. Marek I. The Chemistry of Organolithium Compounds   Vol. 1:  Rappoport Z. Wiley; Chichester: 2004. 
  • 1c Gribble GW. In Science of Synthesis   Vol. 8a:  Majewski M. Snieckus V. Thieme; Stuttgart: 2006.  p.357-426  
  • 2 Bailey WF. Ovaska TV. In Advances in Detailed Reaction Mechanisms: Mechanisms of Importance in Synthesis   Vol. 3:  Coxon JM. JAI Press; Greenwich: 1994.  p.251-273  
  • For reviews, see
  • 3a Parham WE. Bradsher CK. Acc. Chem. Res.  1982,  15:  300 
  • 3b Gray M. Tinkl M. Snieckus V. In Comprehensive Organometallic Chemistry II   Vol. 11:  Abel EW. Stone FGA. Wilkinson G. Pergamon; Exeter: 1995.  p.66-92  
  • 3c Ardeo A. Collado MI. Osante I. Ruiz J. Sotomayor N. Lete E. In Targets in Heterocyclic Systems   Vol. 5:  Atanassi O. Spinelli D. Italian Society of Chemistry; Rome: 2001.  p.393-418  
  • 3d Sotomayor N. Lete E. Curr. Org. Chem.  2003,  7:  275 
  • 3e Nájera C. Sansano JM. Yus M. Tetrahedron  2003,  59:  9255 ; see also ref. 1
  • 4 Parham WE. Jones LD. Sayed YA. J. Org. Chem.  1975,  40:  2394 ; see also ref. 3a
  • For representative examples of our synthetic work in this area, see:
  • 5a Lete E. Egiarte A. Sotomayor N. Vicente T. Villa MJ. Synlett  1993,  41 
  • 5b Collado MI. Manteca I. Sotomayor N. Villa MJ. Lete E. J. Org. Chem.  1997,  62:  2080 
  • 5c Osante I. Collado MI. Lete E. Sotomayor N. Eur. J. Org. Chem.  2001,  1267 
  • 5d González-Temprano I. Sotomayor N. Lete E. Synlett  2002,  593 
  • 5e Osante I. Lete E. Sotomayor N. Tetrahedron Lett.  2004,  45:  1253 
  • 5f González-Temprano I. Osante I. Lete E. Sotomayor N. J. Org. Chem.  2004,  69:  3875 
  • 5g Osante I. Sotomayor N. Lete E. Lett. Org. Chem.  2004,  1:  148 
  • 5h Abdullah MN. Arrassate S. Lete E. Sotomayor N. Tetrahedron  2007,  64:  1329 
  • For reviews, see:
  • 6a Marek I. J. Chem. Soc., Perkin Trans. 1  1999,  535 
  • 6b Mealy MJ. Bailey WF. J. Organomet. Chem.  2002,  646:  59 
  • 6c Clayden J. Organolithiums: Selectivity for Synthesis   Pergamon; New York: 2002.  p.282-335  
  • 6d Normant JF. Top. Organomet. Chem.  2003,  287 
  • 6e Fañanás FJ. Sanz R. In The Chemistry of Organolithium Compounds   Vol. 2:  Rappoport Z. Marek I. Wiley; Chichester: 2006.  Chap. 4. p.295-379  ; see also refs. 1, 2e, and 3
  • For some representative examples, see:
  • 7a Chamberlin AR. Bloom SH. Cervini LA. Fotsch CH. J. Am. Chem. Soc.  1988,  110:  4788 
  • 7b Funk RL. Bolton GL. Brummond KM. Ellestad KE. Stallman JB. J. Am. Chem. Soc.  1993,  115:  7023 
  • 7c Bailey WF. Jiang X.-L. McLeod CE. J. Org. Chem.  1995,  60:  7791 
  • 7d Krief A. Kenda B. Remacle B. Tetrahedron  1996,  52:  7435 
  • 7e Coldham I. Hufton R. Price KN. Rathmell RE. Snowdem DJ. Vennall GP. Synthesis  2001,  1523 
  • 7f Deng K. Bensari A. Cohen T. J. Am. Chem. Soc.  2002,  124:  12106 
  • 7g Sanz R. Ignacio JM. Rodríguez MA. Fañanás FJ. Barluenga J. Chem. Eur. J.  2007,  13:  4998 
  • 7h The procedure has also been extended to the corresponding alkyne derivatives. See, for instance: Wu G. Cederbaum FE. Negishi E. Tetrahedron Lett.  1990,  31:  493 
  • 8a Ross GA. Koppang MD. Bartak DE. Woolsey NF. J. Am. Chem. Soc.  1985,  107:  6742 
  • 8b Harrowven DC. Tetrahedron Lett.  1992,  33:  2879 
  • 8c Bailey WF. Daskapan T. Rampalli S. J. Org. Chem.  2003,  68:  1334 
  • For some representative examples on indoles, see:
  • 9a Barluenga J. Sanz R. Granados A. Fañanás FJ. J. Am. Chem. Soc.  1998,  120:  4865 
  • On indolines, see:
  • 9b Bailey WF. Jiang X.-L. J. Org. Chem.  1996,  61:  2596 
  • 9c Zhang D. Liebskind L. J. Org. Chem.  1996,  61:  2594 
  • On azaindolines, see:
  • 9d Bailey WF. Salgaonkar PD. Brubaker JD. Sharma V. Org. Lett.  2008,  10:  1071 
  • 10a Bailey WF. Mealy MJ. Wiberg KB. Org. Lett.  2002,  4:  791 
  • 10b Fresigné C. Girard A.-L. Durandetti M. Maddaluno J. Angew. Chem. Int. Ed.  2008,  41:  891 
  • 10c Fresigné C. Girard A.-L. Durandetti M. Maddaluno J. Chem. Eur. J.  2008,  14:  5159 
  • 11a Comins DL. Zhang Y.-M. J. Am. Chem. Soc.  1996,  118:  12248 
  • 11b Nishiyama H. Sakata N. Sugimoto H. Motoyama Y. Wakita H. Nagase H. Synlett  1998,  930 
  • 12a Bailey WF. Mealy MJ. J. Am. Chem. Soc.  2000,  122:  6787 
  • 12b Sanz G. Groth UM. J. Am. Chem. Soc.  2000,  122:  6789 
  • 12c Barluenga J. Fañanás FJ. Sanz R. Marcos C. Org. Lett.  2002,  4:  2225 
  • 12d Mealy MJ. Luderer MR. Bailey WF. Sommer MB. J. Org. Chem.  2004,  69:  6042 
  • 12e Barluenga J. Fañanás FJ. Sanz R. Marcos C. Chem. Eur. J.  2005,  11:  5397 
  • 12f Groth U. Koettgen P. Langenbach P. Lindenmaier A. Schuetz T. Wiegand M. Synlett  2008,  1301 
  • 13 Pedrosa R. Andrés C. Iglesias JM. Pérez-Encabo A. J. Am. Chem. Soc.  2001,  123:  1817 
  • 14a Ruiz J. Sotomayor N. Lete E. Org. Lett.  2003,  5:  1115 
  • 14b Ruiz J. Ardeo A. Ignacio R. Sotomayor N. Lete E. Tetrahedron  2005,  61:  3311 
  • 14c Ruiz J. Sotomayor N. Lete E. Tetrahedron  2006,  62:  6182 
  • 15 Mhaske SB. Synlett  2005,  184 
  • 16a Beck AK. Hoekstra MS. Seebach D. Tetrahedron Lett.  1977,  18:  1187 
  • 16b Yoshifuji M. Nakamura T. Inamoto N. Yamamoto Y. Tetrahedron Lett.  1987,  28:  6325 
  • 16c Yamamoto Y. Maeda K. Tomimoto K. Mase T. Synlett  2002,  561 
  • 17a Comins DL. Huang S. McArdale CL. Ingalls CL. Org. Lett.  2001,  3:  469 
  • 17b Comins DL. Nolan JM. Org. Lett.  2001,  3:  4255 
  • 17c Mhaske SB. Argade NP. J. Org. Chem.  2004,  69:  4563 
  • 17d Naka H. Akagi Y. Yamada K. Imahori T. Kasahara T. Kondo Y. Eur. J. Org. Chem.  2007,  4635 
  • 17e Comins DL. Odachi PW. Tetrahedron Lett.  2008,  49:  569 
  • 18 Kondo Y. Asai M. Miura T. Uchiyama M. Sakamoto T. Org. Lett.  2001,  3:  13 
  • For representative examples, see:
  • 22a Paleo MR. Castedo L. Domínguez D. J. Org. Chem.  1993,  58:  2763 
  • 22b Gould SJ. Melville CR. Cone MC. Chen J. Carney JR. J. Org. Chem.  1997,  62:  320 
  • 22c Moreau A. Lorion M. Couture A. Deniau E. Grandclaudon P. J. Org. Chem.  2006,  71:  3303 
  • 23a Aidhen IS. Narasimham NS. Tetrahedron Lett.  1991,  32:  2171 
  • 23b Kihara M. Kashimoto M. Kobayashi Y. Tetrahedron  1992,  48:  67 
19

Mesityllithium-Mediated Carbolithiation Reactions of N -( o -Iodobenzyl)pyrroles 3b,c: Synthesis of Pyrrolo[1,2- b ]isoquinolines - Typical Procedure for the Synthesis of Benzyl 2-(7,8-Dimethoxy-5,10-dihydropyrrolo[1,2- b ]isoquinolin-10-yl)acetate (4b)
To a solution of mesityl bromide (0.1 mL, 0.65 mmol) in dry THF (5 mL), t-BuLi (1.2 mL of a 1.1 M solution in hexane, 1.3 mmol) was added at -78 ˚C, and the reaction mixture was stirred at -20 ˚C for 1 h. N-(o-Iodobenzyl) pyrroles 3b (126 mg, 0.32 mmol) in dry THF (5 mL) was added at -105 ˚C, and the resulting mixture was stirred at this temperature for 5 min. The reaction was quenched by the addition of sat. NH4Cl (5 mL). Then, Et2O (10 mL) was added, the organic layer was separated, and the aqueous phase was extracted with CH2Cl2 (3 × 10 mL). The combined organic extracts were dried (Na2SO4) and concentrated in vacuo. Flash column chromatography (silica gel, 60% hexane-EtOAc) afforded 4b as a colorless oil (113 mg, 92%). IR (CHCl3): 1734 cm. ¹H NMR (300 MHz, CDCl3): δ = 2.75 (d, J = 7.1 Hz, 2 H), 3.81 (s, 3 H), 3.88 (s, 3 H), 4.61 (t, J = 7.1 Hz, 1 H), 4.58 (s, 1 H), 4.61 (s, 1 H), 4.64 (s, 2 H), 6.01 (s, 1 H), 6.18 (t, J = 2.8 Hz, 1 H), 6.70 (s, 2 H), 6.82 (s, 1 H), 7.26-7.35 (m, 5 H). ¹³C NMR (75.47 MHz, CDCl3): δ = 35.3, 43.6, 47.1, 55.9, 66.2, 103.9, 108.2, 109.0, 110.7, 118.4, 124.1, 128.1, 128.4, 129.9, 135.6, 147.6, 148.1, 171.3. MS (EI): m/z (%) = 378(6) [M+ + 1], 377(21) [M+], 287(17), 286(83), 242(7), 229(16), 228(100), 212(15), 184(10), 91(16). HRMS: m/z calcd for C23H23NO4: 377.1627; found: 377.1638.

20

N-Benzylpyrroles 2b-f were prepared by alkylation of the corresponding 2-acylpyrrole 5b-f with bromide 1 under standard conditions (KOH, DMSO) as described in Scheme  [¹] for 2a.

21

In fact, when the reaction described in Table  [³] , entry 6
(t-BuLi, 2 equiv, -90 ˚C, 5 min) was quenched with MeOD, incorporation of deuterium into the acetyl group could be observed by GC-MS.