References and Notes
<A NAME="RD22608ST-1">1</A>
Blakeney JS.
Reid RC.
Le GT.
Fairlie DP.
Chem. Rev.
2007,
107:
2960
<A NAME="RD22608ST-2A">2a</A>
Ogawa H.
Yamashita H.
Kondo K.
Yamamura Y.
Miyamoto H.
Kan K.
Kitano K.
Tanaka M.
Nagaya K.
Nakamura S.
Mori T.
Tominaga M.
Yabuuchi Y.
J. Med. Chem.
1996,
39:
3547
<A NAME="RD22608ST-2B">2b</A>
Mayanoff BE.
Acc. Chem. Res.
2006,
39:
831
<A NAME="RD22608ST-3A">3a</A>
Miyazaki T.
Fujiki H.
Yamamura Y.
Nakamura S.
Mori T.
Cardiovasc. Drug Rev.
2007,
25:
1
<A NAME="RD22608ST-3B">3b</A>
Torisawa Y.
Furuta T.
Nishi T.
Aki S.
Minamikawa J.
Bioorg. Med.
Chem. Lett.
2007,
17:
6455
<A NAME="RD22608ST-3C">3c</A>
Cordero-Vargas A.
Quiclet-Sire B.
Zard SZ.
Bioorg. Med. Chem.
2006,
14:
6165
<A NAME="RD22608ST-4A">4a</A>
Caggiano TJ.
Drugs Future
2002,
27:
248
<A NAME="RD22608ST-4B">4b</A>
Mayanoff BE.
Drug Discovery and Development
Vol. 1:
Chorghade MS.
Wiley;
New
Jersey:
2006.
p.313
<A NAME="RD22608ST-5A">5a</A>
Proctor GR.
Azepines,
In Heterocyclic Compounds
Vol.
43:
Wiley;
New York:
1984.
p.637
<A NAME="RD22608ST-5B">5b</A>
Smalley RK.
Azepines, In Comprehensive Heterocyclic Chemistry
Vol. N7:
Katritzky AR.
Rees CW.
Pergamon Press;
Oxford:
1984.
p.491
<A NAME="RD22608ST-5C">5c</A>
Yet L.
Chem.
Rev.
2000,
100:
2963
<A NAME="RD22608ST-6">6</A>
Maruoka K.
Miyazaki T.
Ando M.
Matsumura Y.
Sakane S.
Hattori K.
Yamamoto H.
J.
Am. Chem. Soc.
1983,
105:
283
<A NAME="RD22608ST-7">7</A>
Grunwald GL.
Dahanukar VH.
Ching P.
Kriscione
KR.
J. Med.
Chem.
1996,
39:
3539
<A NAME="RD22608ST-8A">8a</A>
Learmonth DA.
Proctor GR.
Scopes DIC.
J.
Chem. Soc., Perkin Trans. 1
1997,
2569
<A NAME="RD22608ST-8B">8b</A>
Ikemoto T.
Ito T.
Nishiguchi A.
Miura S.
Tomimatsu K.
Org. Process
Res. Dev.
2005,
9:
168
<A NAME="RD22608ST-9">9</A>
Fujita K.
Yamamoto K.
Yamaguchi R.
Org.
Lett.
2002,
4:
2691
<A NAME="RD22608ST-10A">10a</A>
Gibson SE.
Middleton RJ.
J. Chem. Soc., Chem. Commun.
1995,
1743
<A NAME="RD22608ST-10B">10b</A>
Cropper EL.
White AJP.
Ford A.
Hii KK.
J.
Org. Chem.
2006,
71:
1732
<A NAME="RD22608ST-11A">11a</A>
Omar-Amrani R.
Thomas A.
Brenner E.
Schneider R.
Fort Y.
Org. Lett.
2003,
5:
2311
<A NAME="RD22608ST-11B">11b</A>
Margolis BJ.
Swidorski JJ.
Rogers BN.
J. Org. Chem.
2003,
68:
644
<A NAME="RD22608ST-11C">11c</A>
Qadir M.
Priestley RE.
Rising TWDF.
Gelbrich T.
Coles SJ.
Hursthouse MB.
Sheldrake PW.
Whittall N.
Hii KK.
Tetrahedron
Lett.
2003,
44:
3675
<A NAME="RD22608ST-12A">12a</A>
Kaim LE.
Grimaud L.
Oble J.
J. Org. Chem.
2007,
72:
5835
<A NAME="RD22608ST-12B">12b</A>
Qadir M.
Cobb J.
Sheldrake PW.
Whittall N.
White AJP.
Hii (Mimi) KK.
Horton
PN.
Hursthouse MB.
J. Org. Chem.
2005,
70:
1545
<A NAME="RD22608ST-12C">12c</A>
Dolman SJ.
Schrock RR.
Hoveyada AH.
Org. Lett.
2003,
5:
4899
<A NAME="RD22608ST-12D">12d</A>
Kotha S.
Sha VR.
Eur. J. Org. Chem.
2008,
1054
<A NAME="RD22608ST-13">13</A> For a recent review on medium-ring
heterocycle formation by RCM, see:
Chattopadhyay SK.
Karmakar S.
Biswas T.
Majumdar KC.
Rahaman H.
Roy B.
Tetrahedron
2007,
63:
3919
<A NAME="RD22608ST-14A">14a</A>
Chattopadhyay SK.
Maity S.
Panja S.
Tetrahedron Lett.
2002,
43:
7781
<A NAME="RD22608ST-14B">14b</A>
Chattopadhyay SK.
Biswas T.
Neogi K.
Chem. Lett.
2006,
35:
376
<A NAME="RD22608ST-14C">14c</A>
Chattopadhyay
SK.
Dey R.
Biswas S.
Synthesis
2005,
403
<A NAME="RD22608ST-14D">14d</A>
Chattopadhyay SK.
Roy SP.
Ghosh D.
Biswas G.
Tetrahedron
Lett.
2006,
47:
6895
<A NAME="RD22608ST-14E">14e</A>
Chattopadhyay SK.
Biswas T.
Maity S.
Synlett
2006,
2211
For some recent reviews on Claisen
rearrangement, see:
<A NAME="RD22608ST-15A">15a</A>
Nubbemeyer U.
Synthesis
2003,
961
<A NAME="RD22608ST-15B">15b</A>
Castro
AMM.
Chem. Rev.
2004,
104:
2939
<A NAME="RD22608ST-16">16</A>
Nubbemeyer U.
Top.
Curr. Chem.
2005,
244:
149
<A NAME="RD22608ST-17">17</A>
Krowichi K.
Paillous N.
Riviere M.
Lattes A.
J. Heterocycl. Chem.
1976,
13:
555
<A NAME="RD22608ST-18">18</A>
Rathore R.
Saxena N.
Chandrasekaran S.
Synth. Commun.
1986,
16:
1493
<A NAME="RD22608ST-19">19</A>
Representative
Procedure for the Sequence of Reactions in Scheme 1: N
,
N
-Diallyl-4-methylaniline (6b)
Allyl bromide (2.7 mL, 31.4
mmol) was added dropwise to a solution of 5b (1.7
g, 15.7 mmol) and Et3N (4.4 mL, 31.4 mmol) in dry MeCN
(25 mL), and the mixture was heated to reflux for 18 h. It was then
allowed to come to r.t., concentrated under reduced pressure, and
the residual mass was extracted with EtOAc (50 mL). The extract
was washed successively with H2O (25 mL), brine (25 mL),
and then dried (Na2SO4). It was filtered,
concentrated under reduced pressure, and the residue was purified
by chromatography over SiO2 using PE as eluent to afford 6b as a pale yellow viscous liquid (2.09
g, 71%). IR(neat): 1642, 1619, 1521, 1235, 1182 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.01
(d, 2 H, J = 8.2
Hz), 6.62 (d, 2 H, J = 7.8
Hz), 5.89-5.80 (m,
2 H), 5.20-5.12 (m,
4 H), 3.88 (d, 4 H, J = 4.8
Hz), 2.23 (s, 3 H). Anal. Calcd for C13H17N:
C, 83.37; H, 9.15; N, 7.48. Found: C, 83.34; H, 9.28; N, 7.39.
N
,2-Diallyl-4-methylaniline (7b)
Boron trifluoride etherate
(1.8 mL, 15 mmol) was slowly added to a solution of 6b (1.9
g, 10 mmol) in PhCl (15 mL) under nitrogen, and the mixture was
heated to reflux for 5 h. It was then allowed to come to r.t., quenched
with sat. aq NaHCO3 solution (20 mL), and the aqueous
layer was extracted with EtOAc (2 × 25
mL). The combined organic mixture was washed successively with H2O
(25 mL), brine (25 mL), and then dried (Na2SO4).
It was filtered, concentrated under reduced pressure, and the residue
was purified by chromatography over SiO2 using PE as
eluent to give starting 6b (0.17g, 9%)
followed by the product 7b (1.31g, 69%)
as a pale yellow viscous liquid. IR(neat): 3442, 3387, 1636, 1618,
1515, 1313 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 6.94
(d, 1 H, J = 8.1
Hz), 6.87 (s, 1 H), 6.55 (d, 1 H, J = 8.1
Hz), 5.98-5.92 (m, 2 H), 5.28-5.06 (m, 5 H), 3.76
(dt, 2 H, J = 5.4,
1.5 Hz), 3.28 (d, 2 H, J = 6.2
Hz), 2.24 (s, 3 H). Anal. Calcd for C13H17N:
C, 83.37; H, 9.15; N, 7.48. Found: C, 83.40; H, 9.26; N, 7.43.
N
-Allyl-
N
-(2-allyl-4-methylphenyl)-4-methylbenzene-sulfonamide (8b)
p-Toluenesulfonyl
chloride (1.71 g, 9 mmol) was added to a solution of 7b (1.1g,
5.9 mmol) and Et3N (1.7 mL, 12 mmol) in dry CH2Cl2 (20
mL), and the reaction mixture was stirred at r.t. for 12 h. It was
then diluted with CH2Cl2 (20 mL), and the
solution was washed successively with HCl (1 N, 2 × 25 mL),
H2O (25 mL), brine (25 mL), and then dried (Na2SO4). It
was filtered, concentrated under reduced pressure, and the residue
was purified by chromatography over SiO2 using EtOAc-PE
(1:19) as eluent to give the product as a colorless viscous liquid
(1.7 g, 85%). IR (CHCl3): 1638, 1598, 1497, 1349,
1219, 1164, 1062 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.58
(d, 2 H, J = 8.2
Hz), 7.26 (d, 2 H, J = 8.1
Hz), 7.09 (s, 1 H), 6.85 (d, 1 H, J = 7.9
Hz), 6.46 (d, 1 H, J = 8.0
Hz), 5.97-5.84 (m, 1 H), 5.80-5.68 (m, 1 H), 5.14-5.08
(m, 2 H), 5.01-4.93 (m, 2 H), 4.30 (dd, 1 H, J = 14.0,
5.6 Hz), 3.85 (dd, 1 H, J = 14.0,
7.6 Hz), 3.55 (dd, 1 H, J = 15.5,
6.5 Hz), 3.45 (dd, 1 H, J = 15.4,
6.5 Hz), 2.44 (s, 3 H), 2.30 (s, 3 H). Anal. Calcd for C20H23NO2S:
C, 70.35; H, 6.79; N, 4.10. Found: C, 70.48; H, 6.88; N, 4.29.
7-Methyl-1-tosyl-2,5-dihydro-1
H
-benzo[
b
]azepine (10b)
Catalyst 9 (14
mg, 5 mol%) was added to a solution of 8b (0.11g,
0.32 mmol) in dry, degassed CH2Cl2 (30 mL)
under nitrogen, and the reaction mixture was stirred at r.t. for
2 h. It was then concentrated under reduced pressure and the residue
was chromatographed over SiO2 using EtOAc-PE (1:13)
as eluent to give the product 10b (83 mg,
83%) as a colorless solid; mp 114 ˚C. IR (CHCl3):
1598, 1496, 1343, 1157 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.64
(d, 2 H, J = 8.2
Hz), 7.24 (d, 2 H, J = 8.5
Hz), 7.16 (d, 1 H, J = 8.0 Hz),
7.00 (d, 1 H, J = 7.9
Hz), 6.87 (s, 1 H), 5.66-5.60 (m,
1 H), 5.45-5.41
(m, 1 H), 4.35 (br s, 2 H), 2.92 (br s, 2 H), 2.42 (s, 3 H), 2.29
(s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.1,
140.8, 138.7, 138.3, 136.0, 129.9, 129.7, 129.4, 128.0, 127.0, 125.8,
125.3, 49.1, 32.2, 21.5, 21.0. Anal. Calcd for C18H19NO2S:
C, 68.98; H, 6.11; N, 4.47. Found: C, 69.13; H, 6.18; N, 4.58. MS
(TOFMS ES+): m/z = 336 [M+ + Na].
Selected Data
Compound 10c: Mp 128 ˚C. IR (KBr): 1602,
1500, 1341, 1159 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.63
(d, 2 H, J = 8.2
Hz), 7.24 (d, 2 H, J = 8.1
Hz), 7.19 (d, 1 H, J = 8.8 Hz),
6.71 (dd, 1 H, J = 8.6,
2.9 Hz), 6.58 (d, 1 H, J = 2.7
Hz), 5.65-5.59 (m, 1 H), 5.45-5.41 (m, 1 H), 4.35
(br s, 2 H), 3.78 (s, 3 H), 2.88 (br s, 2 H), 2.42 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 159.2,
143.1, 142.5, 138.6, 131.2, 131.1, 129.4, 127.0, 125.9, 124.9, 114.6,
112.1, 55.3, 49.2, 32.4, 21.5. Anal. Calcd for C18H19NO3S:
C, 65.63; H, 5.81; N, 4.25. Found: C, 65.80; H, 5.98; N, 4.43. MS
(TOFMS ES+):
m/z = 352 [M+ + Na].
Compound 12b: Mp 135 ˚C. IR (KBr): 1715,
1596, 1491, 1352, 1168 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.91
(d, 2 H, J = 8.3
Hz), 7.41 (d, 1 H, J = 8.0
Hz), 7.32 (d, 2 H, J = 8.1
Hz), 7.18 (d, 1 H, J = 8.1
Hz), 7.03 (s, 1 H), 2.48-2.44 (m, 2 H), 2.38 (s, 3 H),
2.23 (s, 3 H), 2.10-2.04 (m,
3 H), 1.79-1.77
(m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 172.7,
144.8, 139.4, 136.6, 135.8, 133.4, 129.7, 129.3, 129.1, 128.8, 127.9,
34.4, 29.1, 27.3, 21.7, 21.1. Anal. Calcd for C18H19NO3S:
C, 65.63; H, 5.81; N, 4.25. Found: C, 65.78; H, 6.04; N, 4.48. MS
(TOFMS ES+): m/z = 352 [M+ + Na].
Compound 16: IR (CHCl3): 1735, 1597,
1342, 1160, 1109 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.91
(d, 1 H, J = 10.0 Hz),
7.68 (d, 2 H, J = 8.2
Hz), 7.35 (d, 1 H, J = 8.8
Hz), 7.30 (d, 2 H, J = 8.1
Hz), 7.17 (d, 1 H, J = 8.7
Hz), 6.43 (d, 1 H, J = 9.9
Hz), 5.79-5.71 (m, 1 H), 5.54-5.50 (m, 1 H), 4.37
(br s, 2 H), 3.34 (d, 2 H, J = 4.0
Hz), 2.45 (s, 3 H). ¹³C NMR (75 MHz,
CDCl3): δ = 159.7,
153.7, 143.6, 140.3, 139.6, 138.0, 135.2, 132.6, 129.7, 126.9, 126.7,
123.5, 116.5, 116.3, 115.5, 48.7, 24.6, 21.4. Anal. Calcd for C20H17NO4S:
C, 65.38; H, 4.66; N, 3.81. Found: C, 65.66; H, 4.83; N, 3.96. MS
(TOFMS ES+): m/z (%) = 390(100) [M + Na],
368(41) [M + H].
Compound 20: mp 224 ˚C IR (KBr): 1654,
1578, 1455, 1333, 1158, 1123 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.90
(d, 1 H, J = 10.0
Hz), 7.68 (d, 2 H, J = 8.2
Hz), 7.47 (d, 1 H, J = 9.0
Hz), 7.30-7.22 (m, 3 H), 6.72 (d, 1 H, J = 10.0
Hz), 5.80-5.73 (m, 1 H), 5.52-5.48 (m, 1 H), 4.13 (br
s, 2 H), 3.71 (s, 3 H), 3.35 (d, 2 H, J = 4.3
Hz), 2.44 (s,
3 H). ¹³C NMR
(75 MHz, CDCl3): δ = 161.6,
143.5, 140.2, 140.1, 138.4, 134.5, 133.4, 131.6, 129.7, 126.9, 124.1, 121.7,
118.1, 113.2, 49.0, 29.8, 24.6, 21.5. Anal. Calcd for C21H20N2O3S:
C, 66.29; H, 5.30; N, 7.36. Found: C, 66.36; H, 5.41; N, 7.24. MS
(TOFMS ES+): m/z = 403 [M + Na].
<A NAME="RD22608ST-20A">20a</A>
O’Kennedy R.
Thornes RD.
Coumarins: Biology, Applications
and Mode of Action
Wiley and Sons;
Chichester:
1997.
<A NAME="RD22608ST-20B">20b</A>
Fylaktakidou KC.
Hadjipavlou-Litina DJ.
Litinas KE.
Nicolaides DN.
Curr. Pharm. Des.
2004,
10:
3813
<A NAME="RD22608ST-21A">21a</A>
Thorsett ED.
Latimer LH.
Curr. Opin. Chem. Biol.
2000,
4:
377
<A NAME="RD22608ST-21B">21b</A>
Chevalier J.
Atifi S.
Eyraud A.
Mahamoud A.
Barbe J.
Pages J.-M.
J.
Med. Chem.
2001,
44:
4023
<A NAME="RD22608ST-22A">22a</A>
Knölker H.-J.
Reddy KR.
Chem. Rev.
2002,
102:
4303
<A NAME="RD22608ST-22B">22b</A>
Gallagher PT. In
Science of Synthesis
(Houben-Weyl)
Vol. 10:
Thomas EJ.
Thieme;
Stuttgart:
2001.
p.693
<A NAME="RD22608ST-22C">22c</A>
Knölker H.-J.
Top. Curr. Chem.
2005,
244:
115