Subscribe to RSS
DOI: 10.1055/s-0028-1087298
Sequential Aza-Claisen Rearrangement and Ring-Closing Metathesis as a Route to 1-Benzazepine Derivatives
Publication History
Publication Date:
23 October 2008 (online)

Abstract
A synthetic strategy based on sequential application of aza-Claisen rearrangement and ring-closing metathesis reaction as key steps has been developed for the synthesis of various 1-benzazepine derivatives of pharmaceutical relevance.
Key words
aza-Claisen rearrangement - benzazepine - ring-closing metathesis
- 1
Blakeney JS.Reid RC.Le GT.Fairlie DP. Chem. Rev. 2007, 107: 2960 - 2a
Ogawa H.Yamashita H.Kondo K.Yamamura Y.Miyamoto H.Kan K.Kitano K.Tanaka M.Nagaya K.Nakamura S.Mori T.Tominaga M.Yabuuchi Y.
J. Med. Chem. 1996, 39: 3547Reference Ris Wihthout Link - 2b
Mayanoff BE. Acc. Chem. Res. 2006, 39: 831Reference Ris Wihthout Link - 3a
Miyazaki T.Fujiki H.Yamamura Y.Nakamura S.Mori T. Cardiovasc. Drug Rev. 2007, 25: 1Reference Ris Wihthout Link - 3b
Torisawa Y.Furuta T.Nishi T.Aki S.Minamikawa J. Bioorg. Med. Chem. Lett. 2007, 17: 6455Reference Ris Wihthout Link - 3c
Cordero-Vargas A.Quiclet-Sire B.Zard SZ. Bioorg. Med. Chem. 2006, 14: 6165Reference Ris Wihthout Link - 4a
Caggiano TJ. Drugs Future 2002, 27: 248Reference Ris Wihthout Link - 4b
Mayanoff BE. Drug Discovery and Development Vol. 1:Chorghade MS. Wiley; New Jersey: 2006. p.313Reference Ris Wihthout Link - 5a
Proctor GR. Azepines, In Heterocyclic Compounds Vol. 43: Wiley; New York: 1984. p.637Reference Ris Wihthout Link - 5b
Smalley RK. Azepines, In Comprehensive Heterocyclic Chemistry Vol. N7:Katritzky AR.Rees CW. Pergamon Press; Oxford: 1984. p.491Reference Ris Wihthout Link - 5c
Yet L. Chem. Rev. 2000, 100: 2963Reference Ris Wihthout Link - 6
Maruoka K.Miyazaki T.Ando M.Matsumura Y.Sakane S.Hattori K.Yamamoto H. J. Am. Chem. Soc. 1983, 105: 283 - 7
Grunwald GL.Dahanukar VH.Ching P.Kriscione KR. J. Med. Chem. 1996, 39: 3539 - 8a
Learmonth DA.Proctor GR.Scopes DIC. J. Chem. Soc., Perkin Trans. 1 1997, 2569Reference Ris Wihthout Link - 8b
Ikemoto T.Ito T.Nishiguchi A.Miura S.Tomimatsu K. Org. Process Res. Dev. 2005, 9: 168Reference Ris Wihthout Link - 9
Fujita K.Yamamoto K.Yamaguchi R. Org. Lett. 2002, 4: 2691 - 10a
Gibson SE.Middleton RJ. J. Chem. Soc., Chem. Commun. 1995, 1743Reference Ris Wihthout Link - 10b
Cropper EL.White AJP.Ford A.Hii KK. J. Org. Chem. 2006, 71: 1732Reference Ris Wihthout Link - 11a
Omar-Amrani R.Thomas A.Brenner E.Schneider R.Fort Y. Org. Lett. 2003, 5: 2311Reference Ris Wihthout Link - 11b
Margolis BJ.Swidorski JJ.Rogers BN. J. Org. Chem. 2003, 68: 644Reference Ris Wihthout Link - 11c
Qadir M.Priestley RE.Rising TWDF.Gelbrich T.Coles SJ.Hursthouse MB.Sheldrake PW.Whittall N.Hii KK. Tetrahedron Lett. 2003, 44: 3675Reference Ris Wihthout Link - 12a
Kaim LE.Grimaud L.Oble J. J. Org. Chem. 2007, 72: 5835Reference Ris Wihthout Link - 12b
Qadir M.Cobb J.Sheldrake PW.Whittall N.White AJP.Hii (Mimi) KK.Horton PN.Hursthouse MB. J. Org. Chem. 2005, 70: 1545Reference Ris Wihthout Link - 12c
Dolman SJ.Schrock RR.Hoveyada AH. Org. Lett. 2003, 5: 4899Reference Ris Wihthout Link - 12d
Kotha S.Sha VR. Eur. J. Org. Chem. 2008, 1054Reference Ris Wihthout Link - 13 For a recent review on medium-ring
heterocycle formation by RCM, see:
Chattopadhyay SK.Karmakar S.Biswas T.Majumdar KC.Rahaman H.Roy B. Tetrahedron 2007, 63: 3919 - 14a
Chattopadhyay SK.Maity S.Panja S. Tetrahedron Lett. 2002, 43: 7781Reference Ris Wihthout Link - 14b
Chattopadhyay SK.Biswas T.Neogi K. Chem. Lett. 2006, 35: 376Reference Ris Wihthout Link - 14c
Chattopadhyay SK.Dey R.Biswas S. Synthesis 2005, 403Reference Ris Wihthout Link - 14d
Chattopadhyay SK.Roy SP.Ghosh D.Biswas G. Tetrahedron Lett. 2006, 47: 6895Reference Ris Wihthout Link - 14e
Chattopadhyay SK.Biswas T.Maity S. Synlett 2006, 2211Reference Ris Wihthout Link - For some recent reviews on Claisen rearrangement, see:
- 15a
Nubbemeyer U. Synthesis 2003, 961Reference Ris Wihthout Link - 15b
Castro AMM. Chem. Rev. 2004, 104: 2939Reference Ris Wihthout Link - 16
Nubbemeyer U. Top. Curr. Chem. 2005, 244: 149 - 17
Krowichi K.Paillous N.Riviere M.Lattes A. J. Heterocycl. Chem. 1976, 13: 555 - 18
Rathore R.Saxena N.Chandrasekaran S. Synth. Commun. 1986, 16: 1493 - 20a
O’Kennedy R.Thornes RD. Coumarins: Biology, Applications and Mode of Action Wiley and Sons; Chichester: 1997.Reference Ris Wihthout Link - 20b
Fylaktakidou KC.Hadjipavlou-Litina DJ.Litinas KE.Nicolaides DN. Curr. Pharm. Des. 2004, 10: 3813Reference Ris Wihthout Link - 21a
Thorsett ED.Latimer LH. Curr. Opin. Chem. Biol. 2000, 4: 377Reference Ris Wihthout Link - 21b
Chevalier J.Atifi S.Eyraud A.Mahamoud A.Barbe J.Pages J.-M. J. Med. Chem. 2001, 44: 4023Reference Ris Wihthout Link - 22a
Knölker H.-J.Reddy KR. Chem. Rev. 2002, 102: 4303Reference Ris Wihthout Link - 22b
Gallagher PT. In Science of Synthesis (Houben-Weyl) Vol. 10:Thomas EJ. Thieme; Stuttgart: 2001. p.693Reference Ris Wihthout Link - 22c
Knölker H.-J. Top. Curr. Chem. 2005, 244: 115Reference Ris Wihthout Link
References and Notes
Representative
Procedure for the Sequence of Reactions in Scheme 1: N
,
N
-Diallyl-4-methylaniline (6b)
Allyl bromide (2.7 mL, 31.4
mmol) was added dropwise to a solution of 5b (1.7
g, 15.7 mmol) and Et3N (4.4 mL, 31.4 mmol) in dry MeCN
(25 mL), and the mixture was heated to reflux for 18 h. It was then
allowed to come to r.t., concentrated under reduced pressure, and
the residual mass was extracted with EtOAc (50 mL). The extract
was washed successively with H2O (25 mL), brine (25 mL),
and then dried (Na2SO4). It was filtered,
concentrated under reduced pressure, and the residue was purified
by chromatography over SiO2 using PE as eluent to afford 6b as a pale yellow viscous liquid (2.09
g, 71%). IR(neat): 1642, 1619, 1521, 1235, 1182 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.01
(d, 2 H, J = 8.2
Hz), 6.62 (d, 2 H, J = 7.8
Hz), 5.89-5.80 (m,
2 H), 5.20-5.12 (m,
4 H), 3.88 (d, 4 H, J = 4.8
Hz), 2.23 (s, 3 H). Anal. Calcd for C13H17N:
C, 83.37; H, 9.15; N, 7.48. Found: C, 83.34; H, 9.28; N, 7.39.
N
,2-Diallyl-4-methylaniline (7b)
Boron trifluoride etherate
(1.8 mL, 15 mmol) was slowly added to a solution of 6b (1.9
g, 10 mmol) in PhCl (15 mL) under nitrogen, and the mixture was
heated to reflux for 5 h. It was then allowed to come to r.t., quenched
with sat. aq NaHCO3 solution (20 mL), and the aqueous
layer was extracted with EtOAc (2 × 25
mL). The combined organic mixture was washed successively with H2O
(25 mL), brine (25 mL), and then dried (Na2SO4).
It was filtered, concentrated under reduced pressure, and the residue
was purified by chromatography over SiO2 using PE as
eluent to give starting 6b (0.17g, 9%)
followed by the product 7b (1.31g, 69%)
as a pale yellow viscous liquid. IR(neat): 3442, 3387, 1636, 1618,
1515, 1313 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 6.94
(d, 1 H, J = 8.1
Hz), 6.87 (s, 1 H), 6.55 (d, 1 H, J = 8.1
Hz), 5.98-5.92 (m, 2 H), 5.28-5.06 (m, 5 H), 3.76
(dt, 2 H, J = 5.4,
1.5 Hz), 3.28 (d, 2 H, J = 6.2
Hz), 2.24 (s, 3 H). Anal. Calcd for C13H17N:
C, 83.37; H, 9.15; N, 7.48. Found: C, 83.40; H, 9.26; N, 7.43.
N
-Allyl-
N
-(2-allyl-4-methylphenyl)-4-methylbenzene-sulfonamide (8b)
p-Toluenesulfonyl
chloride (1.71 g, 9 mmol) was added to a solution of 7b (1.1g,
5.9 mmol) and Et3N (1.7 mL, 12 mmol) in dry CH2Cl2 (20
mL), and the reaction mixture was stirred at r.t. for 12 h. It was
then diluted with CH2Cl2 (20 mL), and the
solution was washed successively with HCl (1 N, 2 × 25 mL),
H2O (25 mL), brine (25 mL), and then dried (Na2SO4). It
was filtered, concentrated under reduced pressure, and the residue
was purified by chromatography over SiO2 using EtOAc-PE
(1:19) as eluent to give the product as a colorless viscous liquid
(1.7 g, 85%). IR (CHCl3): 1638, 1598, 1497, 1349,
1219, 1164, 1062 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.58
(d, 2 H, J = 8.2
Hz), 7.26 (d, 2 H, J = 8.1
Hz), 7.09 (s, 1 H), 6.85 (d, 1 H, J = 7.9
Hz), 6.46 (d, 1 H, J = 8.0
Hz), 5.97-5.84 (m, 1 H), 5.80-5.68 (m, 1 H), 5.14-5.08
(m, 2 H), 5.01-4.93 (m, 2 H), 4.30 (dd, 1 H, J = 14.0,
5.6 Hz), 3.85 (dd, 1 H, J = 14.0,
7.6 Hz), 3.55 (dd, 1 H, J = 15.5,
6.5 Hz), 3.45 (dd, 1 H, J = 15.4,
6.5 Hz), 2.44 (s, 3 H), 2.30 (s, 3 H). Anal. Calcd for C20H23NO2S:
C, 70.35; H, 6.79; N, 4.10. Found: C, 70.48; H, 6.88; N, 4.29.
7-Methyl-1-tosyl-2,5-dihydro-1
H
-benzo[
b
]azepine (10b)
Catalyst 9 (14
mg, 5 mol%) was added to a solution of 8b (0.11g,
0.32 mmol) in dry, degassed CH2Cl2 (30 mL)
under nitrogen, and the reaction mixture was stirred at r.t. for
2 h. It was then concentrated under reduced pressure and the residue
was chromatographed over SiO2 using EtOAc-PE (1:13)
as eluent to give the product 10b (83 mg,
83%) as a colorless solid; mp 114 ˚C. IR (CHCl3):
1598, 1496, 1343, 1157 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.64
(d, 2 H, J = 8.2
Hz), 7.24 (d, 2 H, J = 8.5
Hz), 7.16 (d, 1 H, J = 8.0 Hz),
7.00 (d, 1 H, J = 7.9
Hz), 6.87 (s, 1 H), 5.66-5.60 (m,
1 H), 5.45-5.41
(m, 1 H), 4.35 (br s, 2 H), 2.92 (br s, 2 H), 2.42 (s, 3 H), 2.29
(s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.1,
140.8, 138.7, 138.3, 136.0, 129.9, 129.7, 129.4, 128.0, 127.0, 125.8,
125.3, 49.1, 32.2, 21.5, 21.0. Anal. Calcd for C18H19NO2S:
C, 68.98; H, 6.11; N, 4.47. Found: C, 69.13; H, 6.18; N, 4.58. MS
(TOFMS ES+): m/z = 336 [M+ + Na].
Selected Data
Compound 10c: Mp 128 ˚C. IR (KBr): 1602,
1500, 1341, 1159 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.63
(d, 2 H, J = 8.2
Hz), 7.24 (d, 2 H, J = 8.1
Hz), 7.19 (d, 1 H, J = 8.8 Hz),
6.71 (dd, 1 H, J = 8.6,
2.9 Hz), 6.58 (d, 1 H, J = 2.7
Hz), 5.65-5.59 (m, 1 H), 5.45-5.41 (m, 1 H), 4.35
(br s, 2 H), 3.78 (s, 3 H), 2.88 (br s, 2 H), 2.42 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 159.2,
143.1, 142.5, 138.6, 131.2, 131.1, 129.4, 127.0, 125.9, 124.9, 114.6,
112.1, 55.3, 49.2, 32.4, 21.5. Anal. Calcd for C18H19NO3S:
C, 65.63; H, 5.81; N, 4.25. Found: C, 65.80; H, 5.98; N, 4.43. MS
(TOFMS ES+):
m/z = 352 [M+ + Na].
Compound 12b: Mp 135 ˚C. IR (KBr): 1715,
1596, 1491, 1352, 1168 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.91
(d, 2 H, J = 8.3
Hz), 7.41 (d, 1 H, J = 8.0
Hz), 7.32 (d, 2 H, J = 8.1
Hz), 7.18 (d, 1 H, J = 8.1
Hz), 7.03 (s, 1 H), 2.48-2.44 (m, 2 H), 2.38 (s, 3 H),
2.23 (s, 3 H), 2.10-2.04 (m,
3 H), 1.79-1.77
(m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 172.7,
144.8, 139.4, 136.6, 135.8, 133.4, 129.7, 129.3, 129.1, 128.8, 127.9,
34.4, 29.1, 27.3, 21.7, 21.1. Anal. Calcd for C18H19NO3S:
C, 65.63; H, 5.81; N, 4.25. Found: C, 65.78; H, 6.04; N, 4.48. MS
(TOFMS ES+): m/z = 352 [M+ + Na].
Compound 16: IR (CHCl3): 1735, 1597,
1342, 1160, 1109 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.91
(d, 1 H, J = 10.0 Hz),
7.68 (d, 2 H, J = 8.2
Hz), 7.35 (d, 1 H, J = 8.8
Hz), 7.30 (d, 2 H, J = 8.1
Hz), 7.17 (d, 1 H, J = 8.7
Hz), 6.43 (d, 1 H, J = 9.9
Hz), 5.79-5.71 (m, 1 H), 5.54-5.50 (m, 1 H), 4.37
(br s, 2 H), 3.34 (d, 2 H, J = 4.0
Hz), 2.45 (s, 3 H). ¹³C NMR (75 MHz,
CDCl3): δ = 159.7,
153.7, 143.6, 140.3, 139.6, 138.0, 135.2, 132.6, 129.7, 126.9, 126.7,
123.5, 116.5, 116.3, 115.5, 48.7, 24.6, 21.4. Anal. Calcd for C20H17NO4S:
C, 65.38; H, 4.66; N, 3.81. Found: C, 65.66; H, 4.83; N, 3.96. MS
(TOFMS ES+): m/z (%) = 390(100) [M + Na],
368(41) [M + H].
Compound 20: mp 224 ˚C IR (KBr): 1654,
1578, 1455, 1333, 1158, 1123 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.90
(d, 1 H, J = 10.0
Hz), 7.68 (d, 2 H, J = 8.2
Hz), 7.47 (d, 1 H, J = 9.0
Hz), 7.30-7.22 (m, 3 H), 6.72 (d, 1 H, J = 10.0
Hz), 5.80-5.73 (m, 1 H), 5.52-5.48 (m, 1 H), 4.13 (br
s, 2 H), 3.71 (s, 3 H), 3.35 (d, 2 H, J = 4.3
Hz), 2.44 (s,
3 H). ¹³C NMR
(75 MHz, CDCl3): δ = 161.6,
143.5, 140.2, 140.1, 138.4, 134.5, 133.4, 131.6, 129.7, 126.9, 124.1, 121.7,
118.1, 113.2, 49.0, 29.8, 24.6, 21.5. Anal. Calcd for C21H20N2O3S:
C, 66.29; H, 5.30; N, 7.36. Found: C, 66.36; H, 5.41; N, 7.24. MS
(TOFMS ES+): m/z = 403 [M + Na].