Subscribe to RSS
DOI: 10.1055/s-0028-1087242
Synthesis of Chlorins Extended by Highly Substituted Double Bonds
Publication History
Publication Date:
24 November 2008 (online)

Abstract
Chlorins with highly substituted exocyclic double bonds extending the chromophoric system were synthesized starting from the readily accessible oxochlorin. After sulfurization of the keto function of oxochlorin 7 the formed thioketo chlorin 8 underwent Barton olefination with diazo compounds.
Key words
chlorins - Barton olefination - diazo compounds - extended chromophore
- 1a
Monforts F.-P.Glasenapp-Breiling M.Kusch D. In Houben-Weyl Vol. E9d:Schaumann E. Thieme; Stuttgart: 1998. p.577-716Reference Ris Wihthout Link - 1b
Montforts F.-P.Gerlach B.Höper F. Chem. Rev. 1994. 94: p.327Reference Ris Wihthout Link - 1c
Montforts F.-P.Glasenapp-Breiling M. In Progress in Heterocyclic Chemistry Vol. 10:Gribble GW.Gilchrist TL. Pergamon; Oxford: 1998. p.1-24Reference Ris Wihthout Link - 1d
Galezowski M.Gryko DT. Curr. Org. Chem. 2007, 11: 1310Reference Ris Wihthout Link - 1e
Montforts F.-P.Glasenapp-Breiling M. In Progress in the Chemistry of Organic Natural Products Vol. 84:Herz W.Falk H.Kirby GW. Springer; New York: 2002. p.1-51Reference Ris Wihthout Link - 2a
The
Photosynthetic Reaction Center
Deisenhofer J.Norris JR. Academic Press; New York: 1993.Reference Ris Wihthout Link - 2b
Gust D.Moore TA. In Photoinduced Electron Transfer IIIMattay J. Springer; Berlin: 1991. p.105-151Reference Ris Wihthout Link - 2c
Wasielewski MR. Chem. Rev. 1992, 92: 435Reference Ris Wihthout Link - 2d
Kurreck H.Huber M. Angew. Chem., Int. Ed. Engl. 1995, 34: 849Reference Ris Wihthout Link - 3a
van den Bergh H.Cornaz P. Nachr. Chem., Tech. Lab. 1992, 33: 582Reference Ris Wihthout Link - 3b
Dougherty TJ. Adv. Photochem. 1992, 17: 275Reference Ris Wihthout Link - 3c
Bonnett R.Nizhnik AM.White SG.Beerenbaum MC. J. Photochem. Photobiol., B 1990, 6: 29Reference Ris Wihthout Link - 4a
Montforts F.-P. Angew. Chem., Int. Ed. Engl. 1981, 20: 778Reference Ris Wihthout Link - 4b
Montforts F.-P.Schwartz UM. Liebigs Ann. Chem. 1985, 1228Reference Ris Wihthout Link - 4c
Jacobi PA.Lanz S.Gosh I.Leung SH.Loewer F.Pippin D. Org. Lett. 2001, 3: 831Reference Ris Wihthout Link - 4d
O’Neal WG.Jacobi PA. J. Am. Chem. Soc. 2008, 130: 1102Reference Ris Wihthout Link - 4e
Ptaszek M.Mc. Dowell BE.Taniguchi M.Kim H.-J.Lindsey JS. Tetrahedron 2007, 63: 3826Reference Ris Wihthout Link - 4f
Taniguchi M.Ptaszek M.Mc. Dowell BE.Lindsey JS. Tetrahedron 2007, 63: 3840Reference Ris Wihthout Link - 4g
Taniguchi M.Ptaszek M.Mc. Dowell BE.Lindsey JS. Tetrahedron 2007, 63: 3580Reference Ris Wihthout Link - 4h
Mutiah C.Taniguchi M.Kim H.-J.Schmidt I.Kee HL.Holten D.Bocian DF.Lindsey JS. Photochem. Photobiol. 2007, 83: 1513Reference Ris Wihthout Link - 4i
Mineham TG.Kishi Y. Tetrahedron Lett. 1997, 38: 6811Reference Ris Wihthout Link - 5a
Fischer H.Halbig P.Walach B. Justus Liebigs Ann. Chem. 1927, 452: 268Reference Ris Wihthout Link - 5b
Bonnett R.Dimsdale MJ.Stephanson GF. J. Chem. Soc. C 1969, 564Reference Ris Wihthout Link - 5c
Chang CK.Sotiriou C. J. Org. Chem. 1985, 50: 4989Reference Ris Wihthout Link - 5d
Inhoffen HH.Nolte W. Justus Liebigs Ann. Chem. 1969, 725: 167Reference Ris Wihthout Link - 5e
Montforts F.-P.Meier A.Scheurich G.Haake G.Bats JW. Angew. Chem., Int. Ed. Engl. 1992, 31: 1592Reference Ris Wihthout Link - 5f
Bats JW.Haake G.Meier A.Montforts F.-P.Scheurich G. Liebigs Ann. 1995, 1617Reference Ris Wihthout Link - 5g
Romanowski F.Mai G.Kusch D.Montforts F.-P.Bats JW. Helv. Chim. Acta 1996, 79: 1572Reference Ris Wihthout Link - 5h
Micklefield J.Beckmann M.Mackman RL.Block MH.Leeper FJ.Battersby AR. J. Chem. Soc., Perkin Trans. 1 1997, 2123Reference Ris Wihthout Link - 6a
Barton DHR.Willis BJ. J. Chem. Soc., Perkin Trans. 1 1972, 305Reference Ris Wihthout Link - 6b
Barton DHR.Guziec FS.Shahak I. J. Chem. Soc., Perkin Trans. 1 1974, 1794Reference Ris Wihthout Link - 6c
Back TG.Barton DHR.Britten-Kelley MR.Guziec FS. J. Chem. Soc., Perkin Trans. 1 1976, 2079Reference Ris Wihthout Link - 6d
Buter J.Wassenaar S.Kellogg RM. J. Org. Chem. 1972, 37: 4045Reference Ris Wihthout Link - 7
Scheibje S.Pedersen BS.Lawesson S.-O. Bull. Soc. Chim. Belg. 1978, 87: 229 - 8
Barton DHR.Guziec FS.Shahak I. J. Chem. Soc., Perkin Trans. 1 1974, 1794 ; CAS for diazodiphenyl-methane: 833-40-9 - 9a
Baltzly R.Mehta NB.Russel PB.Brooks RE.Grivsky EM.Steinberg AM. J. Org. Chem. 1961, 26: 3669Reference Ris Wihthout Link - 9b
Schoenberg A.Awad WI.Latif N. J. Chem. Soc. 1951, 1368 ; CAS for diazofluorene: 832-80-4Reference Ris Wihthout Link
References and Notes
Procedure for
the Preparation of the Chlorin Thioketone 8
Diethylenglycol
dimethyl ether (5 mL) was added by a syringe to a mixture of 7 (76.9 mg, 0.155 mmol) and Lawesson’s
reagent (96.6 mg, 0.239 mmol) placed in a flask equipped with a
reflux condenser and a septum. The mixture was stirred for 2.5 h
at 150 ˚C under argon. After cooling to r.t. the
mixture was transferred by a small volume of CH2Cl2 into
a 50 mL round-bottom flask, and the solvent was removed at 80 ˚C
in high vacuum by Kugelrohr distillation. The residue was chromatographed
on silica gel with a slice of 2 cm alumina on top with CH2Cl2-PE
(8:2). The light-green main fraction was collected and the solvent
was removed in vacuo. After isothermic crystallization from CH2Cl2-n-pentane 8 (73.9
mg, 0.145 mmol, 93.5%) was obtained.
Typical Procedure
for the Preparation of Chlorin Derivatives 9-11
Compound 8 (96.3 mg, 0.188 mmol) and 9-diazofluorene (72.3
mg, 0.376 mmol, 2 equiv) were dissolved under argon in 13 mL of
anhyd THF. After stirring for 30 min at r.t. the reaction mixture
was refluxed for 60 min. Then, tris(2-cyanoethyl)phosphine (72.6
mg, 0.376 mmol) was added and refluxing was continued for further
3 h. The reaction mixture was diluted with CH2Cl2 and
the organic layer was washed with H2O (50 mL). The organic
extract was dried by filtration over cotton wool and evaporated
in vacuo. The residue was chromatographed over alumina (activity
II-III) first with PE and then with CH2Cl2-PE
(1:1) giving a crude product which was again chromatographed on
silica gel with CH2Cl2-PE (1:1) to
yield after evaporation of the solvent the light-green product.
Isothermic crystallization from chloroform-n-pentane yielded chlorin 11 (71.8
mg, 0.112 mmol, 60%).
All compounds show correct spectroscopic
and analytic data.
Selected Spectroscopic and Analytic Data
for Compounds 8-11
Compound 8:
mp >350 ˚C. TLC: silica gel, CH2Cl2-PE (8:2): R
f
= 0.74. ¹H
NMR (360 MHz, CDCl3): d = 1.93
(s, 6 H, 3-CH3), 3.16, 3.17, 3.19, 3.21, 3.22
(5 s, 18 H, 7-, 8-, 12-, 13-, 17-, 18-CH3), 8.57, 9.13,
9.19, 9.81 (4 s, 4 H, 5-, 10-, 15-, 20-H). UV/Vis
(CHCl3): lmax (lg e) = 354
mm (4.586), 400 (4.665), 454 (4.652), 551 (4.040), 591 (4.044), 690
(4.605). IR (KBr): 1222 cm-¹ (s, n,
C=S). MS (EI, 70 eV, 286 ˚C): m/z (%) = 514
(10), 513 (17), 512 (47), 511 (33), 510 (100) [M(58Ni)+],
497 (25), 496 (19), 495 (51) [M+ - CH3],
480 (38) [M+ - 2 CH3],
465 (11) [M+ - 3 CH3].
HRMS: m/z calcd for C28H28N4S58Ni:
510.13882; found: 510.13907. Anal. calcd for C28H28N4SNi + 0.1
CH2Cl2: C, 64.93; H, 5.45; N, 10.78; S, 6.17.
Found: C, 64.97; H, 5.41; N, 10.5; S, 6.26.
Compound 9: mp >350 ˚C.
TLC: silica gel, CH2Cl2-PE (1:2): R
f
= 0.63. ¹H
NMR (360 MHz, CDCl3/20 mL pyridine-d
5): d = 1.89
(s, 6 H, 3-CH3), 3.13, 3.14, 3.19, 3.21, 3.22 (5 s,
18 H, 7-, 8-, 12-, 13-, 17-, 18-CH3), 5.75 (s, 1 H, 2-CH),
6.46 (s, 1 H, 2-CH), 8.00, 8.53, 8.61, 8.96 (4 s, 4 H, 5-, 10-,
15-, 20-H). UV/Vis (CHCl3): lmax (lg
e) = 401 nm (4.980), 577 (4.102), 624
(4.638). MS (EI, 70 eV, 255 ˚C): m/z (%) = 495
(13), 494 (39), 493 (26), 492 [84, M(58Ni)+], 479
(44), 478 (40), 477 (100) [M+ - CH3],
476 (14), 475 (12), 461 (12), 246 (11), 238 (11), and fragment ions
of lower mass. HRMS:
m/z calcd
for C29H30N4
58Ni: 492.18220;
found: 491.18240.
Compound 10:
mp >350 ˚C. TLC: silica gel, PE-EtOAc (9:1): R
f
= 0.41. ¹H
NMR (360 MHz, CDCl3/20 mL pyridine-d
5): d = 1.74
(s, 6 H, 3-CH3), 2.54, 3.03, 3.07, 3.15, 3.16 (5 s,
18 H, 7-, 8-, 12-, 13-, 17-, 18-CH3), 7.04-7.17
(m, 4 H, aryl H), 7.41-7.55 (m, 4 H, aryl H), 7.88, 8.01,
9.01, 9.05 (4 s, 4 H, 5-, 10-, 15-, 20-H). UV/Vis
(CHCl3): lmax (lg e) = 415
nm (4.959) 556 (4.203), 645 (4.647). MS (DCI, positive, NH3): m/z (%) = 649
(10), 648 (24) 647 (54), 646 (55), 645 (100) [MH+].
MS (DCI, negative, NH3): m/z (%) = 648
(10), 647 (20), 646 (47), 645 (43), 644 (99) [M-],
and fragments of lower mass, 96 (100). HRMS: m/z calcd
for C41H38N4
58Ni: 644.24480;
found: 644.24500.
Compound 11:
mp >350 ˚C, TLC: silica gel, CH2Cl2-PE (1:1): R
f
= 0.58. ¹H
NMR (360 MHz, C6D6): d = 1.97,
2.46 (2 s, 6 H, 3-CH3), 2.66, 2.82, 2.87, 2.95, 2.98,
2.99 (6 s, 18 H, 7-, 8-, 12-, 13-, 17-, 18-CH3),
6.48 (ddd, ³
J = 8.1
Hz, ³
J = 7.0 Hz, 4
J = 1.1 Hz,
1 H, aryl H), 7.03 (ddd, ³
J = 7.6
Hz, ³
J = 7.0 Hz, 4
J = 1.1 Hz,
1 H, aryl H), 7.25-7.32 (m, 2 H, aryl H), 7.59 (d, ³
J = 7.0 Hz,
1 H, aryl H), 7.68-7.70 (m, 1 H, aryl H), 7.79 (d, ³
J = 8.6 Hz,
1 H, aryl H), 8.45-8.47 (m, 1 H, aryl H), 8.02, 9.12, 9.16,
9.68 (4 s, 4 H, 5-, 10-, 15-, 20-H). UV/Vis (CHCl3):
lmax (lg e) = 344 nm (4.618),
444 (4.680), 590 (4.123), 687 (4.683). MS (DCI, negative, NH3): m/z (%) = 646
(12), 645 (28), 644 (46), 643 (51), 642 (100) [M-]. HRMS: m/z calcd for C41H36N4
58Ni:
642.22937; found; 642.22907.