Subscribe to RSS
DOI: 10.1055/a-2720-5058
Synthesis and Investigation of Novel Nickel-based Metal Organic Frameworks
Authors
This work was partially supported by grants of the Romanian Ministry of Research, Innovation and Digitization, PNRR/2022/C9/MCID/I8, project number CF 760056/23.05.2023, code 235/29.11.2022. M.F, A.G.M. and I.M.C acknowledge the Romanian Ministry of Research, Innovation, and Digitization through the Core Program 2023-2026 (grant no. PC3-PN23080303) and project PED84/2025.
Supported by: Romanian Ministry of Research, Innovation, and Digitization PC3-PN23080303
Supported by: COST CA23139

Abstract
Metal-organic frameworks (MOFs) represent a versatile and highly tunable class of porous coordination polymers. Herein, we present the synthesis of novel MOFs using different synthetic methodologies based on a quionoxaline-multifunctional flexible ligand and nickel ions. The organic ligand was prepared via aromatic nucleophilic substitution using 2,3-dichloroquinoxaline, and its structure and purity were confirmed by NMR spectroscopy. The successful formation of the MOFs was validated by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), and FTIR spectroscopy. The thermogravimetry revealed that these new materials are stable below 350 °C, and the analysis of the N2 adsorption–desorption isotherms confirmed the porous structure. Furthermore, the CO2 adsorption capacity at room temperature demonstrated that these materials have promising potential for carbon capture and mitigation applications.
Keywords
Metal-organic frameworks - Coordination polymer - Quinoxaline - Multifunctional ligand - Nickel ions - CO2 adsorptionPublication History
Received: 15 May 2025
Accepted after revision: 21 August 2025
Article published online:
31 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science 2013; 341: 1230444
- 2 Han Y, Yang H, Guo X. Synth Methods Cryst. 2020
- 3 Katoch A, Goyal N, Gautam S. Vacuum 2019; 167: 287
- 4 Sud D, Kaur G. Polyhedron 2021; 193: 114897
- 5 Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature 1999; 402: 276
- 6 Silva P, Vilela SMF, Tomé JPC, Almeida Paz FA. Chem Soc Rev 2015; 44: 6774
- 7 Ma D, Huang X, Zhang Y, Wang L, Wang B. Nano Res 2023; 16: 7906
- 8 Chakraborty D, Yurdusen A, Mouchaham G, Nouar F, Serre C. Adv Funct Mater 2024; 34: 2309089
- 9 He Q, Zhan F, Wang H, Xu W, Wang H, Chen L. Mater Today Sustainability 2022; 17: 100104
- 10 Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou HC. Mater Today 2018; 21: 108
- 11 Freund R, Zaremba O, Arnauts G. et al. Angew Chem, Int Ed 2021; 60: 23975
- 12 Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Chem Rev 2020; 120: 8468
- 13 Xu Y, Li Q, Xue H, Pang H. Coord Chem Rev 2018; 376: 292
- 14 Fajal S, Samanta P, Dutta S, Ghosh SK. Inorg Chim Acta 2020; 502: 119359
- 15 Sun Y, Zheng L, Yang Y. et al. Nano-Micro Lett 2020; 12: 103
- 16 Wang H, Zhu QL, Zou R, Xu Q. Chem 2017; 2: 52
- 17 Ravi R, Golder AK. Coord Chem Rev 2025; 523: 216267
- 18 Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R. Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater 2014; 70: 3
- 19 Janiak CJ. Chem Soc, Dalton Trans 3 2003; 2781
- 20 Eddaoudi M, Moler DB, Li H. et al. Acc Chem Res 2001; 34: 319
- 21 Choi HJ, Lee TS, Suh MP. J Incl Phenom 2001; 41: 155
- 22 Davies RP, Less RJ, Lickiss PD, White AJP. Dalton Trans 2007; 2528
- 23 Schoedel A, Rajeh S. Top Curr Chem 2020; 378: 19
- 24 Furukawa H, Kim J, Ockwig NW, O’Keeffe M, Yaghi OM. J Am Chem Soc 2008; 130: 11650
- 25 Abrahams BF, Coleiro J, Ha K, Hoskins BF, Orchard SD, Robson R. J Chem Soc, Dalton Trans 2002; 1586
- 26 Huang X, Li Y, Fu S. et al. Angew Chem Int Ed 2024; 63: e202320091
- 27 Nguyen NTT, Furukawa H, Gándara F. et al. J Am Chem Soc 2015; 137: 15394
- 28 Mouchaham G, Cooper L, Guillou N. et al. Angew Chem Int Ed 2015; 54: 13297
- 29 Shimizu G, Vaidhyanathan R, Taylor J. Chem Soc Rev 2009; 38: 1430
- 30 Desai AV, Sharma S, Let S, Ghosh SK. Coord Chem Rev 2019; 395: 146
- 31 Robin AY, Fromm KM. Coord Chem Rev 2006; 250: 2127
- 32 Montero V, Montana M, Carré M, Vanelle P. Eur J Med Chem 2024; 271: 116360
- 33 Ajani OO. Eur J Med Chem 2014; 85: 688
- 34 Cook TR, Zheng YR, Stang PJ. Chem Rev 2013; 113: 734
- 35 Zhu Y, Wang YM, Zhao SY. et al. Inorg Chem 2014; 53: 7692
- 36 Helal A, Shaheen Shah S, Usman M, Khan MY, Aziz MA, Mizanur Rahman M. Chem Rec 2022; 22: e202200055
- 37 Pereira JA, Pessoa AM, Cordeiro MNDS. et al. Eur J Med Chem 2015; 97: 664
- 38 Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Global Chall 2024; 8: 2300244
- 39 Yusuf VF, Malek NI, Kailasa SK. ACS Omega 2022; 7: 44507
- 40 Li H, Eddaoudi M, Groy TL, Yaghi OM. J Am Chem Soc 1998; 120: 8571
- 41 Jiang J, Zhao Y, Yaghi OM. J Am Chem Soc 2016; 138: 3255
- 42 Huang L, Wang H, Chen J. et al. Microporous Mesoporous Mater 2003; 58: 105
- 43 Tranchemontagne DJ, Hunt JR, Yaghi OM. Tetrahedron 2008; 64: 8553
- 44 Bennett TD, Simoncic P, Moggach SA. et al. Chem Commun 2011; 47: 7983
- 45 Justi M, de Freitas MP, Silla JM, Nunes CA, Silva CA. J Mol Struct 2021; 1237: 130405
- 46 Bhosale R, Bhosale S, Kumbhar P. et al. New J Chem 2023; 47: 6749
- 47 Hang X, Xue Y, Cheng Y, Du M, Du L, Pang H. Inorg Chem 2021; 60: 13168
- 48 Zhang C, Zhang Q, Zhang K, Xiao Z, Yang Y, Wang L. RSC Adv 2018; 8: 17747
- 49 Keskin Avci S, Erucar I. Compr Energy Syst 2018; 1–5: 182
- 50 Zdravkov BD, Čermák JJ, Šefara M, Janků J. Open Chem 2007; 5: 385
- 51 Zhang PM, Li YW, Zhou J. et al. J Heterocycl Chem 2018; 55: 1809
- 52 El-Atawy MA, Hamed EA, Alhadi M, Omar AZ. Molecules 2019; 24: 4198