Subscribe to RSS
DOI: 10.1055/a-2697-1591
Synthesis and Photophysical Properties of Vinyl-conjugated o-Carborane–isoxazole Dyads
This research was funded by the Russian Science Foundation and the Government of Sverdlovsk region, Project № 24-13-20023, https://rscf.ru/en/project/24-13-20023/

Abstract
A metal-free synthetic strategy based on the cycloaddition reaction of oxamoyl chlorides to vinylacetylene o-carborane toward photoactive molecular systems bearing both vinyl-conjugated C-substituted o-carborane and isoxazole moieties is reported. The elaborated compounds exhibit absorption in the range of 250–300 nm with ε > 104 cm–1·M–1, but their emission varies greatly depending on the type of substituent at the C3 position of the isoxazole and does not demonstrate the solvatochromic characteristics typically associated with classical push–pull fluorophores. Incorporation of methoxy groups into the o-carborane–isoxazole dyads allows the design of an acceptor–π-conjugation–donor system (A–π–D), which is more efficient in light of intermolecular charge transfer (ICT) effects compared to the similar 1,2,3-triazole ones. Photoactive molecules with p-chlorophenyl and 2-(trifluoromethoxy)phenyl substituted in toluene have intense emissions of TICT states and PLQY up to 91%. Meanwhile, the 2-naphthyl-substituted molecule demonstrates dual-emission behavior in the 330–560 and 660–800 nm region with QY of 83 and 62%, respectively. Thus, the cycloaddition reactions of N-centered 1,3-dipoles to vinylacetylene o-carborane can be regarded as a promising synthetic approach in the design of advanced materials.
Keywords
o-Carborane - Isoxazole - 1,3-Dipolar cycloaddition - Fluorophores - Intermolecular charge transferPublication History
Received: 03 July 2025
Accepted after revision: 01 September 2025
Article published online:
24 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Grimes RN. Icosahedral Carboranes. Carboranes: Elsevier; 2016: 283-502
- 1b Poater J, Solà M, Viñas C, Teixidor F. Angew Chem Int Ed 2014; 53 (45) 12191-12195
- 1c Poater J, Viñas C, Bennour I, Escayola S, Solà M, Teixidor F. J Am Chem Soc 2020; 142 (20) 9396-9407
- 1d Electron Deficient Boron and Carbon Clusters. Olah GA, Wade K. eds New York: A Wiley-Interscience publication; Wiley; 1991
- 1e Kong L, Cui C. Synlett 2021; 32: 1316
- 2a Smyshliaeva LA, Varaksin MV, Charushin VN, Chupakhin ON. Synthesis 2020; 52 (03) 337-352
- 2b Qiu Z. Tetrahedron Lett 2015; 56 (08) 963-971
- 2c Zhao D, Xie Z. Coord Chem Rev 2016; 314: 14-33
- 2d Zhao D. Functionalization of Carborane Via Carboryne Intermediates. Springer Theses Singapore: Springer Singapore; 2016
- 2e Qiu Z, Xie Z. Chem Soc Rev 2022; 51 (08) 3164-3180
- 2f Xie Z, Zhang J. Synthesis 2024; 57 (03) 495-521
- 4a Mukherjee S, Thilagar P. Chem Commun 2016; 52 (06) 1070-1093
- 4b Li X, Yan H, Zhao Q. Chem Eur J 2016; 22 (06) 1888-1898
- 4c Grimes RN. Carborane polymers and dendrimers. In: Carboranes. Elsevier; 2016: 905-927
- 4d Grimes RN. Carboranes in other applications. In: Carboranes. Elsevier; 2016: 985-1019
- 4e Moseev TD, Idrisov TA, Varaksin MV, Charushin VN, Chupakhin ON. Chim Tech Acta 2025; 12 (02) 12213 8489
- 5a Cabrera-González J, Bhattacharyya S, Milián-Medina B. et al. Eur J Inorg Chem 2017; 2017 38–39 4575-4580
- 5b Prokhorov AM, Hofbeck T, Czerwieniec R, Suleymanova AF, Kozhevnikov DN, Yersin H. J Am Chem Soc 2014; 136 (27) 9637-9642
- 5c Marshall J, Fei Z, Yau CP. et al. Mater Chem C 2014; 2 (02) 232-239
- 5d Marshall J, Schroeder BC, Bronstein H. et al. Macromolecules 2014; 47 (01) 89-96
- 5e Guo J, Liu D, Zhang J, Zhang J, Miao Q, Xie Z. Chem Commun 2015; 51 (60) 12004-12007
- 5f Peterson JJ, Werre M, Simon YC, Coughlin EB, Carter KR. Macromolecules 2009; 42 (22) 8594-8598
- 5g Peterson JJ, Davis AR, Werre M, Coughlin EB, Carter KR. ACS Appl Mater Interfaces 2011; 3 (06) 1796-1799
- 5h Davis AR, Peterson JJ, Carter KR. ACS Macro Lett 2012; 1 (04) 469-472
- 5i Ochi J, Yuhara K, Tanaka K, Chujo Y. Chem Eur J 2022; 28 (20) e202200155
- 6a Al Sharif OF, Nhari LM, El-Shishtawy RM, Asiri AM. Mat Tod Chem 2023; 29: 101453
- 6b Knyazhanskii MI, Gilyanovskii PV, Osipov OA. Chem Heterocycl Compd 1977; 13 (11) 1160-1177
- 6c Zbancioc G, Mangalagiu II, Moldoveanu C. Molecules 2022; 27 (19) 6321
- 6d Lavrinchenko IA, Moseev TD, Varaksin MV, Charushin VN, Chupakhin ON. Russ Chem Rev 2024; 93 (10) RCR5130
- 7a Yao Z-J, Jin Y-X, Deng W, Liu Z-J. Inorg Chem 2021; 60 (04) 2756-2763
- 7b Liu K, Wang G, Ding N. et al. ACS Appl Mater Interfaces 2021; 13 (16) 19342-19350
- 7c Liu K, Qin M, Shi Q. et al. Anal Chem 2022; 94 (32) 11151-11158
- 7d Wu X, Zhang C, Li N, Lv Y, Chi J, Guo JJ. Mater Chem C 2024; 12 (41) 16809-16816
- 8a Nghia NV, Oh J, Sujith S, Jung J, Lee MH. Dalton Trans 2018; 47 (48) 17441-17449
- 8b Kim M, Im S, Ryu CH, Lee SH, Hong JH, Lee KM. Dalton Trans 2021; 50 (09) 3207-3215
- 9a Galliamova LA, Varaksin MV, Chupakhin ON, Slepukhin PA, Charushin VN. Organometallics 2015; 34 (21) 5285-5290
- 9b Smyshliaeva LA, Varaksin MV, Fomina EI. et al. Organometallics 2020; 39 (20) 3679-3688
- 9c Moseev TD, Idrisov TA, Varaksin MV, Tsmokaluk AN, Charushin VN, Chupakhin ON. Reactions 2024; 5 (04) 868-882
- 10a Singh MS, Chowdhury S, Koley S. Tetrahedron 2016; 72 (13) 1603-1644
- 10b Breugst M, Reissig H. Angew Chem Int Ed 2020; 59 (30) 12293-12307
- 11a Campbell MM, Cosford NDP, Rae DR, Sainsbury M. J Chem Soc Perkin Trans 1991; 1 (04) 765-770
- 11b Tretyakov EV, Utepova IA, Varaksin MV. et al. ARKIVOC 2011; 2011: 76
- 11c Katritzky AR, Button MAC, Denisenko SN. J Heterocycl Chem 2000; 37: 1505-1510
- 12a Zhang X-W, Hu W-L, Chen S, Hu X-G. Org Lett 2018; 20: 860
- 12b El Kaïm L, Grimaud L, Patil P. Synlett 2012; 23: 1361
- 12c Ghosh D, Sherin A, Ghosh S, Kalose SA, Hajra A. Adv Synth Catal 2024; 366: 2186
- 12d Serebryannikova AV, Galenko EE, Novikov MS, Khlebnikov AF. J Org Chem 2019; 84: 15567
- 12e Thakur A, Verma M, Bharti R, Sharma R. Tetrahedron 2022; 119: 132813
- 13a Misra R, Bhattacharyya SP. Intramolecular Charge Transfer: Theory and Applications. 1st ed. Wiley; 2018
- 13b Behera SK, Park SY, Gierschner J. Angew Chem Int Ed 2021; 60 (42) 22624-22638
- 13c Kukhta NA, Bryce MR. Mater Horiz 2021; 8 (01) 33-55
- 13d Ochi J, Tanaka K, Chujo Y. Angew Chem Int Ed 2020; 59 (25) 9841-9855
- 14 Neese F. Wiley Interdiscip Rev Comput Mol Sci 2012; 2: 73
- 15 Chai J-D, Head-Gordon M. Phys Chem Chem Phys 2008; 10: 6615
- 16 Weigend F, Ahlrichs R. Phys Chem Chem Phys 2005; 7: 3297
- 17 Neese F, Wennmohs F, Hansen A, Becker U. Chem Phys 2009; 356: 98
- 18 Lu T, Chen FJ. Comput Chem 2012; 33: 580
- 19 Dennington R, Keith TA, Millam JM. GaussView 6.0.16. Semichem Inc., Shawnee Mission; 2016
- 20 Zhou L, Haorah J, Chen SC. et al. Chem Res Toxicol 2004; 17: 416-423
- 21a Bicic S, Klare HFT, Oestreich M. ACS Catal 2025; 15: 6434
- 21b He Y, He T-J, Cheng X, Wei Y, Wang H, Lin Y-W. Chem Commun 2024; 60: 6961
- 21c for 2 g,i see: Chen S, Liu Y, Wang Z. et al. Eur J Med Chem 2024; 268: 116227
- 21d for 2h see: Li J, Tanaka H, Imagawa T. et al. Chemistry 2024; 30: e202303403
For 2 b,c,e see:
for 2d see: