Synlett, Table of Contents Synlett DOI: 10.1055/a-2694-7263 Synpacts Enhancing Reactivity and Selectivity of H2-driven Copper Hydride Chemistry with Bifunctional N-heterocyclic Carbene Ligands Bearing Basic Subunits Authors Author Affiliations Giriraj Pal ‡ 1 Institut für Chemie, Technische Universität Chemnitz, Chemnitz, Germany (Ringgold ID: RIN38869) Maximilian Voigtländer ‡ 1 Institut für Chemie, Technische Universität Chemnitz, Chemnitz, Germany (Ringgold ID: RIN38869) Dimitrios-Ioannis Tzaras 1 Institut für Chemie, Technische Universität Chemnitz, Chemnitz, Germany (Ringgold ID: RIN38869) Mahadeb Gorai 1 Institut für Chemie, Technische Universität Chemnitz, Chemnitz, Germany (Ringgold ID: RIN38869) Johannes F. Teichert 1 Institut für Chemie, Technische Universität Chemnitz, Chemnitz, Germany (Ringgold ID: RIN38869) Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract This synpacts article highlights two recent developments in H2-driven copper hydride chemistry with bifunctional N-heterocyclic carbene (NHC) ligands. Two distinct bifunctional copper(I) complexes emerge, each with different, basic nitrogen-based, catalytically active functional groups. A guanidine-appended NHC enables a site-selective catalytic hydrogenation of the so-called “privileged” amides in the presence of other, structurally closely related amides. Furthermore, a second bifunctional NHC ligand bearing a basic 2-iminopyridine subunit allows for catalytic hydrogenation of alkynes and conjugated amides under low H2 pressure. Both catalysts are placed into a common context by discussing the fundamental mechanism of heterolytic H2 activation and the fate of the resulting proton. Keywords KeywordsN-heterocyclic carbenes - Copper - Hydrogen - Catalysis - Organocatalysis - Hydrogenation - Coordination chemistry Full Text References References For reviews on copper hydride chemistry, see: 1a Jordan AJ, Lalic G, Sadighi JP. Chem Rev 2016; 116: 8318 1b Deutsch C, Krause N. Chem Rev 2008; 108: 2916 1c Rendler S, Oestreich M. Angew Chem Int Ed 2007; 46: 498 2 Mahoney WS, Brestensky DM, Stryker JM. J Am Chem Soc 1988; 110: 291 For an early example, see: 3a Brunner H, Miehling W. J Organomet Chem 1984; 275: c17 For a recent review, see: 3b Liu RY, Buchwald SL. Acc Chem Res 2020; 53: 1229 For reviews, see: 4a Garduño JA, García JJ. ChemCatChem 2025; 17: e202401693 4b Thiel NO, Pape F, Teichert JF. Homogeneous Hydrogenation with Non-Precious Catalysts. John Wiley & Sons, Ltd; 2019: 87 For selected examples, see: 5a Mahoney WS, Stryker JM. J Am Chem Soc 1989; 111: 8818 5b Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org Lett 2007; 9: 1655 5c Shimizu H, Nagano T, Sayo N, Saito T, Ohshima T, Mashima K. Synlett 2009; 3143 5d Junge K, Wendt B, Addis D. et al. Chem Eur J 2011; 17: 101 6a Halpern J. J Phys Chem 1959; 63: 398 6b Goeden GV, Caulton KG. J Am Chem Soc 1981; 103: 7354 6c Patrick E, Mallikarjun Sharada S, Zoraster A. et al. Angew Chem Int Ed 2025; e202510627 For selected examples, see: 7a Pape F, Thiel NO, Teichert JF. Chem Eur J 2015; 21: 15934 7b Semba K, Kameyama R, Nakao Y. Synlett 2015; 26: 318 7c Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Organometallics 2016; 35: 1354 7d Thiel NO, Teichert JF. Org Biomol Chem 2016; 14: 10660 7e Pape F, Teichert JF. Eur J Org Chem 2017; 4206 7f Tzaras D-I, Voigtländer M, Zimmermann BM, Rüffer T, Teichert JF. Eur J Org Chem 2025; e202500389 For a concept article, see: 8a Brechmann LT, Teichert JF. Synthesis 2020; 52: 2483 For selected examples, see: 8b Pape F, Brechmann LT, Teichert JF. Chem Eur J 2019; 25: 985 8c Brechmann LT, Kaewmee B, Teichert JF. ACS Catal 2023; 13: 12634 9a Zimmermann BM, Ngoc TT, Tzaras D-I, Kaicharla T, Teichert JF. J Am Chem Soc 2021; 143: 16865 9b Gorai M, Teichert JF. Synlett 2024; 35: 989 10 Tzaras D-I, Gorai M, Jacquemin T. et al. J Am Chem Soc 2025; 147: 1867 11 Gorai M, Franzen JH, Rotering P, Rüffer T, Dielmann F, Teichert JF. J Am Chem Soc 2025; 147: 14481 12 Gross KMB, Beak P. J Am Chem Soc 2001; 123: 315 13 Zimmermann BM, Kobosil SCK, Teichert JF. Chem Commun 2019; 55: 2293 14a Shang J, Han Z, Li Y, Wang Z, Ding K. Chem Commun 2012; 48: 5172 14b Lang Q, Gu G, Cheng Y, Yin Q, Zhang X. ACS Catal 2018; 8: 4824 14c Wen J, Fan X, Tan R. et al. Org Lett 2018; 20: 2143 14d Zhou J, Ogle JW, Fan Y, Banphavichit Bee V, Zhu Y, Burgess K. Chem Eur J 2007; 13: 7162 14e Peters BBC, Birke N, Massaro L, Andersson PG. Synlett 2023; 34: 1519