Subscribe to RSS
DOI: 10.1055/a-2684-8351
Factors Associated with Anterior Tibial Subluxation in Anterior Cruciate Ligament-Deficient Knees
Authors

Abstract
Anterior tibial subluxation (ATS) in knee extension is observed in knees with anterior cruciate ligament (ACL) injuries. Preoperative ATS adversely affects the postoperative anterior stability and increases the risk of early graft failure. To investigate the factors associated with preoperative ATS in knees with ACL injury. A total of 191 patients who underwent primary ACL reconstruction between 2017 and 2022 were included. Preoperatively, all patients underwent lateral radiography with full extension of both knees to evaluate the ATS. These 191 patients were divided into two groups based on ATS positivity. Positive ATS was defined as a side-to-side difference (SSD) in ATS > SD from the average SSD in ATS. The evaluation items included age, sex, height, weight, time from injury to surgery, mechanism of injury, posterior tibial slope, knee hyperextension angle, anterior tibial translation (ATT), meniscal tear on arthroscopy, and intraoperative pivot shift grade. There were 32 patients in the ATS-positive group. The overall average SSD in ATS was 1.7 ± 1.9 mm. Therefore, ATS > 3.6 mm was regarded as positive ATS. A logistic regression analysis indicated that positive ATS predictors were the ATT (odds ratio [OR]: 1.27; 95% confidence interval [CI]: 1.13–1.44; p < 0.001), >6 months from injury to surgery (OR: 2.89; 95% CI: 1.19–7.06; p = 0.02), and the contralateral hyper-extension angle (OR: 1.10; 95% CI: 1.00–1.21; p = 0.049). No significant difference was observed between the groups regarding meniscal tears. Anterior knee laxity, chronicity of ACL-deficiency, and hyperextension affect preoperative ATS in knees with ACL injuries. This study is a cross-sectional study providing level III evidence.
Contributors' Statement
All authors contributed to the writing of the final manuscript.
Ethical Approval
This study was ethically approved by the institutional review board of Gunma University Graduate School of Medicine, Maebashi, Japan, where the study was performed.
Informed Consent
Informed consent was obtained from all patients included in the study.
Publication History
Received: 19 April 2025
Accepted: 15 August 2025
Article published online:
03 September 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Almekinders LC, de Castro D. Fixed tibial subluxation after successful anterior cruciate ligament reconstruction. Am J Sports Med 2001; 29 (03) 280-283
- 2 Almekinders LC, Pandarinath R, Rahusen FT. Knee stability following anterior cruciate ligament rupture and surgery. The contribution of irreducible tibial subluxation. J Bone Joint Surg Am 2004; 86 (05) 983-987
- 3 Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 1994; 76 (05) 745-749
- 4 Tanaka Y, Kita K, Takao R. et al. Chronicity of anterior cruciate ligament deficiency, part 1: effects on the tibiofemoral relationship before and immediately after anatomic ACL reconstruction with autologous hamstring grafts. Orthop J Sports Med 2018; 6 (01) 2325967117750813
- 5 Tanaka Y, Kita K, Takao R. et al. Chronicity of anterior cruciate ligament deficiency, part 2: radiographic predictors of early graft failure. Orthop J Sports Med 2018; 6 (02) 2325967117751915
- 6 Song GY, Zhang H, Wang QQ, Zhang J, Li Y, Feng H. Risk factors associated with grade 3 pivot shift after acute anterior cruciate ligament injuries. Am J Sports Med 2016; 44 (02) 362-369
- 7 Tanaka M, Vyas D, Moloney G, Bedi A, Pearle AD, Musahl V. What does it take to have a high-grade pivot shift?. Knee Surg Sports Traumatol Arthrosc 2012; 20 (04) 737-742
- 8 Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G. Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears. Knee Surg Sports Traumatol Arthrosc 2019; 27 (02) 564-572
- 9 McDonald LS, van der List JP, Jones KJ. et al. Passive anterior tibial subluxation in the setting of anterior cruciate ligament injuries: a comparative analysis of ligament-deficient states. Am J Sports Med 2017; 45 (07) 1537-1546
- 10 Tanaka MJ, Jones KJ, Gargiulo AM. et al. Passive anterior tibial subluxation in anterior cruciate ligament-deficient knees. Am J Sports Med 2013; 41 (10) 2347-2352
- 11 Zheng T, Song GY, Feng H. et al. Lateral meniscus posterior root lesion influences anterior tibial subluxation of the lateral compartment in extension after anterior cruciate ligament injury. Am J Sports Med 2020; 48 (04) 838-846
- 12 Stephen JM, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA. Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med 2016; 44 (02) 400-408
- 13 Franklin JL, Rosenberg TD, Paulos LE, France EP. Radiographic assessment of instability of the knee due to rupture of the anterior cruciate ligament. A quadriceps-contraction technique. J Bone Joint Surg Am 1991; 73 (03) 365-372
- 14 Fukuta H, Takahashi S, Hasegawa Y, Ida K, Iwata H. Passive terminal extension causes anterior tibial translation in some anterior cruciate ligament-deficient knees. J Orthop Sci 2000; 5 (03) 192-197
- 15 Muller B, Duerr ERH, van Dijk CN, Fu FH. Anatomic anterior cruciate ligament reconstruction: reducing anterior tibial subluxation. Knee Surg Sports Traumatol Arthrosc 2016; 24 (09) 3005-3010
- 16 Dejour H, Walch G, Chambat P, Ranger P. Active subluxation in extension: a new concept of study of the ACL deficient knee. Am J Knee Surg 1988; 1: 204-211
- 17 Iriuchishima T, Shirakura K, Horaguchi T. et al. Age as a predictor of residual muscle weakness after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2012; 20 (01) 173-178
- 18 Hatayama K, Terauchi M, Saito K, Takase R, Higuchi H. Healing status of meniscal ramp lesion affects anterior knee stability after ACL reconstruction. Orthop J Sports Med 2020; 8 (05) 2325967120917674
- 19 Pache S, Aman ZS, Kennedy M. et al. Meniscal root tears: current concepts review. Arch Bone Jt Surg 2018; 6 (04) 250-259
- 20 Petersen W, Forkel P, Feucht MJ, Zantop T, Imhoff AB, Brucker PU. Posterior root tear of the medial and lateral meniscus. Arch Orthop Trauma Surg 2014; 134 (02) 237-255
- 21 Yabroudi MA, Björnsson H, Lynch AD. et al. Predictors of revision surgery after primary anterior cruciate ligament reconstruction. Orthop J Sports Med 2016; 4 (09) 2325967116666039
- 22 Mishima S, Takahashi S, Kondo S, Ishiguro N. Anterior tibial subluxation in anterior cruciate ligament-deficient knees: quantification using magnetic resonance imaging. Arthroscopy 2005; 21 (10) 1193-1196
- 23 Nishida K, Matsushita T, Araki D. et al. Analysis of anterior tibial subluxation to the femur at maximum extension in anterior cruciate ligament-deficient knees. J Orthop Surg (Hong Kong) 2019; 27 (01) 2309499019833606
- 24 Grassi A, Macchiarola L, Urrizola Barrientos F. et al. Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med 2019; 47 (02) 285-295
- 25 Liu X, Feng H, Zhang H, Hong L, Wang XS, Zhang J. Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med 2011; 39 (04) 832-837
- 26 Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH. Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med 2011; 39 (10) 2187-2193
- 27 Kim SJ, Moon HK, Kim SG, Chun YM, Oh KS. Does severity or specific joint laxity influence clinical outcomes of anterior cruciate ligament reconstruction?. Clin Orthop Relat Res 2010; 468 (04) 1136-1141
- 28 Howell SM, Barad SJ. Knee extension and its relationship to the slope of the intercondylar roof. Implications for positioning the tibial tunnel in anterior cruciate ligament reconstructions. Am J Sports Med 1995; 23 (03) 288-294
- 29 Jagodzinski M, Richter GM, Pässler HH. Biomechanical analysis of knee hyperextension and of the impingement of the anterior cruciate ligament: a cinematographic MRI study with impact on tibial tunnel positioning in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2000; 8 (01) 11-19
- 30 Saito K, Hatayama K, Terauchi M, Hagiwara K, Higuchi H, Takagishi K. Clinical outcomes after anatomic double-bundle anterior cruciate ligament reconstruction: comparison of extreme knee hyperextension and normal to mild knee hyperextension. Arthroscopy 2015; 31 (07) 1310-1317
- 31 Rasmussen MT, Nitri M, Williams BT. et al. An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med 2016; 44 (03) 585-592
- 32 Nitri M, Rasmussen MT, Williams BT. et al. An in vitro robotic assessment of the anterolateral ligament, part 2: anterolateral ligament reconstruction combined with anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44 (03) 593-601
- 33 Song GY, Zhang H, Zhang J, Zhang ZJ, Zheng T, Feng H. Excessive preoperative anterior tibial subluxation in extension is associated with inferior knee stability after anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2020; 48 (03) 573-580