Subscribe to RSS
DOI: 10.1055/a-2681-5727
Facile Synthesis of 3-Thio-Substituted 9-Oxo-1-Hetaryl-9H-Indeno[2,1-c]Pyridine-4-Carbonitriles as End Groups for Non-Fullerene Acceptors
Authors
The authors gratefully acknowledge financial support from the Russian Science Foundation (grant No. 24-23-00026).

Abstract
We developed mild synthetic conditions for the formation of 3-thio-substituted 9-oxo-1-hetaryl-9H-indeno[2,1-c]pyridine-4-carbonitriles in quantitative yields via the reaction of readily available 2-(3-oxo-2-arylidene-2,3-dihydro-1H-inden-1-ylidene)malononitrile with S-nucleophiles. The developed protocol demonstrated superior efficiency to N-nucleophiles via a two-step approach compared to the known methods. The potential application of the synthesized thio-substituted 2-azafluorenones as terminal groups in non-fullerene acceptors (NFAs) for organic solar cells was successfully demonstrated. The key characteristics of these novel end-group-functionalized NFAs were evaluated and compared with well-established literature analogs.
Keywords
2-Azafluorenones - S-Nucleophiles - 2-(3-Oxo-2-arylidene-2,3-dihydro-1H-inden-1-ylidene)malononitrile - Non-fullerene acceptors - Organic solar cellsPublication History
Received: 05 May 2025
Accepted after revision: 11 August 2025
Accepted Manuscript online:
11 August 2025
Article published online:
01 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Heintzelman GR, Bullington JL, Rupert KC. WO Patent 2005042500 A1 2005
- 2 Anaga N, D, B Abraham B, Nisha P, Varughese S, Jayamurthy P, Somappa SB. Bioorg. Chem. 2020; 105: 104375
- 3 Tugrak M, Inci Gul H, Sakagami H, Gulcin I, Supuran CT. Bioorg. Chem. 2018; 81: 433
- 4 Upadhayaya RS, Shinde PD, Kadam SA, Bawane AN, Sayyed AY, Kardile RA, Gitay PN, Lahore SV, Dixit SS, Földesi A, Chattopadhyaya J. Eur. J. Med. Chem. 2011; 46: 1306
- 5 Feng J, Jian X, Jiang G, Wang J. Luminescence 2024; 39: e4669
- 6 Gao M, Su H, Lin Y, Ling X, Li S, Qin A, Tang BZ. Chem. Sci. 2017; 8: 1763
- 7 Huang L, Li S, Ling X, Zhang J, Qin A, Zhuang J, Gao M, Tang BZ. Chem. Comm. 2019; 55: 7458
- 8 Yang D, Yang S, Wang H, Xie L, Yan P, Ge Z. Sci. China Chem. 2024; 67: 323
- 9 Li Y, Fan W, Xu HW, Jiang B, Wang SL, Tu SJ. Org. Biomol. Chem. 2013; 11: 2417
- 10 Yingjun W, Meng G, Xubo T, Lijing H. CN Patent 114507182 A 2022
- 11 Noirbent G, Xu Y, Bonardi AH, Duval S, Gigmes D, Lalevée J, Dumur F. Molecules 2020; 25: 2317
- 12 Shang Y, Wen Y, Li S, Du S, He X, Cai L, Li Y, Yang L, Gao H, Song Y. J. Am. Chem. Soc. 2007; 129: 11674
- 13 Bandar JS, Coscia RW, Lambert TH. Tetrahedron 2011; 67: 4364
- 14 Abdelrazek FM, Metz P, Jaeger A. J. Heterocycl. Chem. 2019: 56 1939;
- 15 Vu NH, Damke J-E, Borrmann T, Latos-Grażyński L, Montforts F-P. Helv. Chim. Acta 2014; 97: 188
- 16 Landmesser T, Linden A, Hansen HJ. Helv. Chim. Acta 2008; 91: 265
- 17 Yang D, Yang Q, Yang L, Luo Q, Chen Y, Zhu Y, Huang Y, Lu Z, Zhao S. Chem. Comm. 2014; 50: 9346
- 18 Langhals H, Krotz O, Polborn K, Mayer P. Angew. Chem. Int. Ed. 2005; 44: 2427
- 19 Strohriegl P, Grazulevicius J. V Adv. Mat. 2002; 14: 1439
- 20 Nowak-Król A, Wagener R, Kraus F, Mishra A, Bäuerle P, Würthner F. Org. Chem. Front. 2016; 3: 545
- 21 Wu Y, Zhu W. Chem. Soc. Rev. 2013; 42: 2039
- 22 Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv. Mat. 2019; 31: 1902210
- 23 Shang Y, Wen Y, Li S, Du S, He X, Cai L, Li Y, Yang L, Gao H, Song Y. J. Am. Chem. Soc. 2007; 129: 11674
- 24 Mousawi AAl, Garra P, Dumur F, Bui TT, Goubard F, Toufaily J, Hamieh T, Graff B, Gigmes D, Fouassier JP, Lalevée J. Molecules 2017; 22: 2143
- 25 Yang Y, Xue M, Marshall LJ, de Mendoza J. Org. Lett. 2011; 13: 3186
- 26 Ren W, Zhuang H, Bao Q, Miao S, Li H, Lu J, Wang L. Dyes Pigm. 2014; 100: 127