Subscribe to RSS
DOI: 10.1055/a-2655-2961
Visible Light-Triggered Regiodivergent and Enantioselective Alkylation of Glycine Derivatives
Supported by: National Youth Talent Support Program
Supported by: School of Chemistry and Chemical Engineering, Henan Normal University 2024Y01
Supported by: National Natural Science Foundation of China 22071209, 22371237

Abstract
Regiodivergent asymmetric synthesis provides a powerful strategy for generating structurally diverse chiral molecules from common starting materials. However, achieving precise control over both regio- and stereoselectivity in radical-mediated processes remains a formidable challenge, largely due to the transient nature and flexibility of radical intermediates. To tackle this longstanding issue, we have developed a cooperative catalytic platform that integrates photoinduced hydrogen atom transfer (HAT) with chiral copper catalysis. This dual-catalyst system enables regiodivergent and enantioselective C(sp3)–H functionalization of N-aryl glycine derivatives using simple hydrocarbons as alkylating agents. Through systematic modulation of chiral ligands, additives, and other reaction parameters, we have achieved switchable formation of either C(sp3)–C(sp3) or C(sp3)–N bonds, leading to the selective synthesis of C- or N-alkylated products. The reactions proceed with high efficiency (up to 92% yield), excellent regiocontrol (>20:1 rr), and outstanding enantioselectivity (up to 96% ee). Importantly, this methodology facilitates site-selective alkylation of biologically relevant scaffolds and demonstrates tunable regioselectivity under mild photochemical conditions. Thus, it establishes a new paradigm for stereocontrolled bond construction in complex molecular architectures.
Keywords
Regiodivergent synthesis - Asymmetric synthesis - Hydrogen atom transfer - Chiral copper catalysis - C(sp3)–H functionalizationPublication History
Received: 28 May 2025
Accepted after revision: 14 July 2025
Accepted Manuscript online:
14 July 2025
Article published online:
05 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Mahatthananchai J, Dumas AM, Bode JW. Angew Chem Int Ed 2012; 51: 10954
- 1b Ping L, Chung DS, Bouffard J, Lee S-G. Chem Soc Rev 2017; 46: 4299
- 1c Nájera C, Beletskaya IP, Yus M. Chem Soc Rev 2019; 48: 4515
- 2a Zhan G, Du W, Chen Y-C. Chem Soc Rev 2017; 46: 1675
- 2b Collins S, Sieber JD. Chem Commun 2023; 59: 10087
- 3a Romero NA, Nicewicz DA. Chem Rev 2016; 116: 10075
- 3b Xiong T, Zhang Q. Chem Soc Rev 2021; 50: 8857
- 3c Nagib DA. Chem Rev 2022; 122: 15989
- 4a Sibi MP, Manyem S, Zimmerman J. Chem Rev 2003; 103: 3263
- 4b Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Chem Rev 2022; 122: 5842
- 5a Gu Q-S, Li Z-L, Liu X-Y. Acc Chem Res 2019; 53: 170
- 5b Schwinger DP, Bach T. Acc Chem Res 1933; 2020: 53
- 6a Gansäuer A, Shi L, Otte M. J Am Chem Soc 2010; 132: 11858
- 6b Zhang Z, Slak D, Krebs T. et al. J Am Chem Soc 2023; 145: 26667
- 7 Li L, Yang S, Xu Z, Li S, Jiang J, Zhang Y-Q. J Am Chem Soc 2024; 146: 13546
- 8 Wang X, Xue J, Rong Z-Q. J Am Chem Soc 2023; 145: 15456
- 9 Fan C, Dhawa U, Qian D, Sakic D, Morel J, Hu X. Angew Chem Int Ed 2024; 63: e202406767
- 10 Yang F, Chi L, Ye Z, Gong L. J Am Chem Soc 2025; 147: 1467
- 11 Cheung PSK, Fang J, Mukherjee K, Mihranyan A, Gevorgyan V. Science 2022; 378: 1207
- 12 Qi R, Wang C, Huo Y. et al. J Am Chem Soc 2021; 143: 12777
- 13 Li Y, Lei M, Gong L. Nat Catal 2019; 2: 1016
- 14a Chen C, Peters JC, Fu GC. Nature 2021; 596: 250
- 14b Chen J-J, Fang J-H, Du X-Y. et al. Nature 2023; 618: 294