Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/a-2650-7789
DOI: 10.1055/a-2650-7789
Paper
Published as part of the Bürgenstock Special Section 2023 – Future Stars in Organic
Chemistry
Experimental Electrochemical Potentials of Iodine(III) Reagents
A.C. would like to thank the Deutsche Forschungsgemeinschaft (DFG) that has partially funded this work through the project CA 3451/1-1.

Abstract
We report the electrochemical reduction potentials of a library of 50 iodine(III) reagents, including cyclic alkynyl-, vinyl-, aryl-, cyano-, and trifluoromethyl- and azidobenziodoxol(on)es and several linear iodonium salts, which are measured by cyclic voltammetry in acetonitrile and tetrahydrofuran as solvents.
Keywords
Electrochemical potentials - Iodine(III) - Ethynylbenziodoxol(on)e - Vinylbenziodoxol(on)e - Cyanobenziodoxol(on)e - Azidobenziodoxol(on)e - Togni reagentPublication History
Received: 25 April 2025
Accepted after revision: 07 July 2025
Accepted Manuscript online:
07 July 2025
Article published online:
12 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Yoshimura A, Zhdankin VV. Chem Rev 2016; 116: 3328-3435
- 1b Hari DP, Caramenti P, Waser J. Acc Chem Res 2018; 51: 3212-3225
- 1c Wang X, Studer A. Acc Chem Res 2017; 50: 1712-1724
- 2 Allouche EMD, Grinhagena E, Waser J. Angew Chem Int Ed 2022; 61: e202112287
- 3 Seebach D. Angew Chem Int Ed Engl 1979; 18: 239-258
- 4 Li Y, Studer A. Angew Chem Int Ed 2012; 51: 8221-8224
- 5a Mizuta S, Verhoog S, Engle KM. et al. J Am Chem Soc 2013; 135: 2505-2508
- 5b Tomita R, Yasu Y, Koike T, Akita M. Angew Chem Int Ed 2014; 53: 7144-7148
- 5c Tobisu M, Furukawa T, Chatani N. Chem Lett 2013; 42: 1203-1205
- 6a Dohi T, Ito M, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Tetrahedron 2009; 65: 10797-10815
- 6b Dohi T, Morimoto K, Takenaga N. et al. J Org Chem 2007; 72: 109-116
- 7a Liu X, Wang Z, Cheng X, Li C. J Am Chem Soc 2012; 134: 14330-14333
- 7b Le Vaillant F, Wodrich MD, Waser J. Chem Sci 2017; 8: 1790-1800
- 7c Zhou Q-Q, Guo W, Ding W. et al. Angew Chem Int Ed 2015; 54: 11196-11199
- 7d Le Vaillant F, Courant T, Waser J. Angew Chem Int Ed 2015; 54: 11200-11204
- 7e Kita Y, Tohma H, Takada T, Mitoh S, Fujita S, Gyoten M. Synlett 1994; 1994: 427-428
- 7f Zhdankin VV, Krasutsky AP, Kuehl CJ. et al. J Am Chem Soc 1996; 118: 5192-5197
- 8a Silva FCS, Tierno AF, Wengryniuk SE. Molecules 2017; 22: 780
- 8b Casitas A, Andreetta P. in Advances in Catalysis, Vol. 74: Earth-Abundant Transition Metal Catalyzed Reactions. Eds. Diéguez M, Ollevier T. Elsevier; 2024. pp. 33-98
- 8c Yang Y, Antoni P, Zimmer M. et al. Angew Chem Int Ed 2019; 58: 5129-5133
- 8d Canty AJ, Patel J, Rodemann T, Ryan JH, Skelton BW, White AH. Organometallics 2004; 23: 3466-3473
- 8e Canty AJ, Rodemann T. Inorg Chem Commun 2003; 6: 1382-1384
- 8f Kalyani D, Deprez NR, Desai LV, Sanford MS. J Am Chem Soc 2005; 127: 7330-7331
- 8g Phipps RJ, Gaunt MJ. Science 2009; 323: 1593-1597
- 8h Suero MG, Bayle ED, Collins BSL, Gaunt MJ. J Am Chem Soc 2013; 135: 5332-5335
- 8i Iyanaga M, Aihara Y, Chatani N. J Org Chem 2014; 79: 11933-11939
- 8j Shreiber ST, DiMucci IM, Khrizanforov MN. et al. Inorg Chem 2020; 59: 9143-9151
- 8k Nappi M, He C, Whitehurst WG, Chappell BGN, Gaunt MJ. Angew Chem Int Ed 2018; 57: 3178-3182
- 8l Bertho S, Rey-Rodriguez R, Colas C, Retailleau P, Gillaizeau I. Chem Eur J 2017; 23: 17674-17677
- 8m Day CS, Fawcett A, Chatterjee R, Hartwig JF. J Am Chem Soc 2021; 143: 16184-16196
- 9a Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A. Angew Chem Int Ed 2009; 48: 4332-4336
- 9b Parsons AT, Senecal TD, Buchwald SL. Angew Chem Int Ed 2012; 51: 2947-2950
- 10a Doobary S, Di Tommaso EM, Postole A, Inge AK, Olofsson B. Front Chem 2024; 12
- 10b Davies J, Sheikh NS, Leonori D. Angew Chem Int Ed 2017; 56: 13361-13365
- 11a Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714-723
- 11b Lu Z, Putziger J, Lin S. Nat Chem 2025; 17: 365-372
- 12 Pavlishchuk VV, Addison AW. Inorg Chim Acta 2000; 298: 97-102
- 13 Marken F, Neudeck A, Bond AM. In Electroanalytical Methods: Guide to Experiments and Applications. Scholz F. ed Berlin Heidelberg, Berlin, Heidelberg: Springer; 2002: 51-97
- 14a Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Simonsen AJ. J Org Chem 1996; 61: 6547-6551
- 14b Ochiai M, Masaki Y, Shiro M. J Org Chem 1991; 56: 5511-5513
- 15 Brand JP, Waser J. Chem Soc Rev 2012; 41: 4165-4179
- 16 Le Du E, Waser J. Chem Commun 2023; 59: 1589-1604
- 17 Amos SGE, Cavalli D, Le Vaillant F, Waser J. Angew Chem Int Ed 2021; 60: 23827-23834
- 18 Hari DP, Waser J. J Am Chem Soc 2016; 138: 2190-2193
- 19 Boelke A, Kuczmera TJ, Caspers LD, Lork E, Nachtsheim BJ. Org Lett 2020; 22: 7261-7266
- 20 Pan Y, Jia K, Chen Y, Chen Y. Beilstein J Org Chem 2018; 14: 1215-1221
- 21 Milzarek TM, Ramirez NP, Liu X-Y, Waser J. Chem Commun 2023; 59: 12637-12640
- 22 House HO, Feng E, Peet NP. J Org Chem 1971; 36: 2371-2375
- 23 Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. Wiley; New York: 2001
- 24 Souilah C, Jannuzi SAV, Demirbas D. et al. Angew Chem Int Ed 2022; 61: e202201699
- 25a Izquierdo S, Essafi S, del Rosal I. et al. J Am Chem Soc 2016; 138: 12747-12750
- 25b Aprile A, Iversen KJ, Wilson DJD, Dutton JL. Inorg Chem 2015; 54: 4934-4939
- 26 CCDC 2442064 (Cl-BX4-tBu), 2442065 ([(4-F-Ph)I(CCTMS)][OTf]), 2442066 ([(3-F-Ph)I(CCTMS)][OTf]), 2442067 ([PhI(Mes)][OTf]), 2442068 (Cl-BX4-tBu) and 2442069 ([E-(PhCH=CH)I(Mes)][OTf]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif
- 27a Bykowski RMD, Tykwinski RR. ARKIVOC 2003; (part iv) 21-29
- 27b Dixon LI, Carroll MA, Gregson TJ, Ellames GJ, Harrington RW, Clegg W. Eur J Org Chem 2013; 2013: 2334-2345
- 27c Hamnett DJ, Moran WJ. Org Biomol Chem 2014; 12: 4156-4162
- 28 Vase KH, Holm AH, Pedersen SU, Daasbjerg K. Langmuir 2005; 21: 8085-8089
- 29 Declas N, Pisella G, Waser J. Helv Chim Acta 2020; 103: e2000191
- 30 Stridfeldt E, Seemann A, Bouma MJ, Dey C, Ertan A, Olofsson B. Chem Eur J 2016; 22: 16066-16070
- 31a Castoldi L, Di Tommaso EM, Reitti M, Gräfen B, Olofsson B. Angew Chem Int Ed 2020; 59: 15512-15516
- 31b Liu B, Alegre-Requena JV, Paton RS, Miyake GM. Chem Eur J 2020; 26: 2386-2394
- 32a Jiang H, Studer A. Chem Eur J 2019; 25: 516-520
- 32b Le Vaillant F, Garreau M, Nicolai S, Gryn'ova G, Corminboeuf C, Waser J. Chem Sci 2018; 9: 5883-5889
- 32c Matsumoto K, Nakajima M, Nemoto T. J Org Chem 2020; 85: 11802-11811
- 33a Pisella G, Gagnebin A, Waser J. Org Lett 2020; 22: 3884-3889
- 33b Borrel J, Pisella G, Waser J. Org Lett 2020; 22: 422-427
- 33c Boelke A, Caspers LD, Nachtsheim BJ. Org Lett 2017; 19: 5344-5347
- 33d Caramenti P, Declas N, Tessier R, Wodrich MD, Waser J. Chem Sci 2019; 10: 3223-3230
- 34a Mészáros Á, Székely A, Stirling A, Novák Z. Angew Chem Int Ed 2018; 57: 6643-6647
- 34b Ochiai M, Toyonari M, Nagaoka T, Chen D-W, Kida M. Tetrahedron Lett 1997; 38: 6709-6712
- 34c Stang PJ. Angew Chem Int Ed 1992; 31: 274-285
- 34d Ochiai M. J Organomet Chem 2000; 611: 494-508
- 34e Okuyama T. Acc Chem Res 2002; 35: 12-18
- 34f Pirkuliev NS, Brel VK, Zefirov NS. Russ Chem Rev 2000; 69: 105-120
- 35a Moriarty RM, Epa WR, Awasthi AK. J Am Chem Soc 1991; 113: 6315-6317
- 35b Hinkle RJ, Poulter GT, Stang PJ. J Am Chem Soc 1993; 115: 11626-11627
- 35c Kang S-K, Lee H-W, Jang S-B, Ho P-S. J Org Chem 1996; 61: 4720-4724
- 35d Kang S-K, Yamaguchi T, Hong R-K, Kim T-H, Pyun S-J. Tetrahedron 1997; 53: 3027-3034
- 35e Pirguliyev NS, Brel VK, Zefirov NS, Stang PJ. Tetrahedron 1999; 55: 12377-12386
- 35f Yoshida M, Komata A, Hara S. J Fluor Chem 2004; 125: 527-529
- 35g Skucas E, MacMillan DWC. J Am Chem Soc 2012; 134: 9090-9093
- 35h Cahard E, Bremeyer N, Gaunt MJ. Angew Chem Int Ed 2013; 52: 9284-9288
- 35i Holt D, Gaunt MJ. Angew Chem Int Ed 2015; 54: 7857-7861
- 35j Guo J, Lin L, Liu Y, Li X, Liu X, Feng X. Org Lett 2016; 18: 5540-5543
- 35k Sheng J, Wang Y, Su X, He R, Chen C. Angew Chem Int Ed 2017; 56: 4824-4828
- 35l Liu C, Wang Q. Angew Chem Int Ed 2018; 57: 4727-4731
- 35m Thielges S, Bisseret P, Eustache J. Org Lett 2005; 7: 681-684
- 35n Kang S-K, Lim K-H, Ho P-S, Kim W-Y. Synthesis 1997; 1997: 874-876
- 36a Clegg W, Harrington RW. CCDC 1989094: Experimental Crystal Structure Determination. 2020.
- 36b Hinkle RJ, McDonald RA. Acta Crystallogr Sect C Cryst Struct Commun 2002; 58: o117-o121
- 36c Ochiai M, Hirobe M, Yoshimura A, Nishi Y, Miyamoto K, Shiro M. Org Lett 2007; 9: 3335-3338
- 36d Yoshimura A, Huss CD, Liebl M. et al. Adv Synth Catal 2021; 363: 3365-3371
- 37 Yusubov MS, Yusubova RY, Nemykin VN, Zhdankin VV. J Org Chem 2013; 78: 3767-3773
- 38a Beringer FM, Huang SJ. J Org Chem 1964; 29: 445-448
- 38b Beringer FM, Huang SJ. J Org Chem 1964; 29: 1637-1638
- 38c Del Mazza D, Reinecke MG. J Org Chem 1988; 53: 5799-5806
- 38d Nakayama J, Tajiri T, Hoshino M. Bull Chem Soc Jpn 2006; 59: 2907-2908
- 39 Yusubov MS, Soldatova NS, Postnikov PS. et al. Eur J Org Chem 2018; 2018: 640-647
- 40 Almasalma AA, Mejía E. Eur J Org Chem 2018; 2018: 188-195
- 41a Merritt EA, Olofsson B. Angew Chem Int Ed 2009; 48: 9052-9070
- 41b Olofsson B. In Hypervalent Iodine Chemistry. Wirth T. ed Cham: Springer International Publishing; 2016: 135-166
- 41c Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Chem Rev 2023; 123: 1364-1416
- 41d Mamgain R, Sakthivel K, Singh FV. Beilstein J Org Chem 2024; 20: 2891-2920
- 41e Pacheco-Benichou A, Besson T, Fruit C. Catalysts 2020; 10: 483
- 42 Bielawski M, Olofsson B. Chem Commun 2007; 2521-2523
- 43 Zhu M, Jalalian N, Olofsson B. Synlett 2008; 2008: 592-596
- 44a Jha S, Javaly N, Basu S, McCormick T, Stuart D. ChemRxiv. 2024
- 44b Mayer RJ, Ofial AR, Mayr H, Legault CY. J Am Chem Soc 2020; 142: 5221-5233
- 45a Yusubov MS, Svitich DY, Yoshimura A, Kastern BJ, Nemykin VN, Zhdankin VV. Eur J Org Chem 2015; 2015: 4831-4834
- 45b Yoshimura A, Shea MT, Guselnikova O. et al. Chem Commun 2018; 54: 10363-10366
- 45c Bugaenko DI, Yurovskaya MA, Karchava AV. Org Lett 2018; 20: 6389-6393
- 46 Le Du E, Ramirez NP, Nicolai S. et al. Helv Chim Acta 2023; 106: e202200175
- 47 Bachofner HE, Beringer FM, Meites L. J Am Chem Soc 1958; 80: 4274-4278
- 48a Fung S, Moratti SC, Graham SC, Friend RH. Synth Met 1999; 102: 1167-1168
- 48b Romańczyk PP, Kurek SS. Electrochim Acta 2020; 351: 136404
- 48c Weissmann M, Baranton S, Coutanceau C. Langmuir 2010; 26: 15002-15009
- 48d Nalli TW, Stanek LG, Molenaar RH. et al. J Org Chem 2013; 78: 3561-3569
- 49 Mato M, Bruzzese PC, Takahashi F. et al. J Am Chem Soc 2023; 145: 18742-18747
- 50a Zhdankin VV, Kuehl CJ, Krasutsky AP. et al. Tetrahedron Lett 1995; 36: 7975-7978
- 50b Mowry DT. Chem Rev 1948; 42: 189-283
- 51a Frei R, Courant T, Wodrich MD, Waser J. Chem Eur J 2015; 21: 2662-2668
- 51b Maity A, Roy A, Das MK, De S, Naskar M, Bisai A. Org Biomol Chem 2020; 18: 1679-1684
- 51c Vaillant FL, Waser J. Chimia 2017; 71: 226
- 51d Kong X, Chen X, Chen Y, Cao Z-Y. J Org Chem 2022; 87: 7013-7021
- 51e Yisimayili N, Lu C-D. Org Lett 2024; 26: 4371-4376
- 51f Chen Z, Yuan W. Chem Eur J 2021; 27: 14836-14840
- 51g Hang Z, Tong X, Li Z, Wang Z-Y, Xue W. Tetrahedron Lett 2022; 88: 153564
- 51h Chen Z, Zheng S, Wang Z, Liao Z, Yuan W. ChemPhotoChem 2021; 5: 906-910
- 51i Sun M-X, Wang Y-F, Xu B-H, Ma X-Q, Zhang S-J. Org Biomol Chem 2018; 16: 1971-1975
- 51j Nagata T, Matsubara H, Kiyokawa K, Minakata S. Org Lett 2017; 19: 4672-4675
- 51k Ma B, Lin X, Lin L, Feng X, Liu X. J Org Chem 2017; 82: 701-708
- 51l Feng Y-S, Shu Y-J, Cao P, Xu T, Xu H-J. Org Biomol Chem 2017; 15: 3590-3593
- 51m Vita MV, Caramenti P, Waser J. Org Lett 2015; 17: 5832-5835
- 51n Declas N, Le Vaillant F, Waser J. Org Lett 2019; 21: 524-528
- 51o Chowdhury R, Schörgenhumer J, Novacek J, Waser M. Tetrahedron Lett 2015; 56: 1911-1914
- 51p Chen M, Huang Z-T, Zheng Q-Y. Org Biomol Chem 2015; 13: 8812-8816
- 51q Wang Y-F, Qiu J, Kong D. et al. Org Biomol Chem 2015; 13: 365-368
- 52a Zhdankin VV, Crittell CM, Stang PJ, Zefirov NS. Tetrahedron Lett 1990; 31: 4821-4824
- 52b Zhdankin VV, Scheuller MC, Stang PJ. Tetrahedron Lett 1993; 34: 6853-6856
- 53a Wang X, Studer A. J Am Chem Soc 2016; 138: 2977-2980
- 53b Shu Z, Ji W, Wang X, Zhou Y, Zhang Y, Wang J. Angew Chem Int Ed 2014; 53: 2186-2189
- 53c Zhu D, Chang D, Shi L. Chem Commun 2015; 51: 7180-7183
- 54 Bennetts JD, Barwise L, Sharp-Bucknall L, White KF, Hogan CF, Dutton JL. Dalton Trans 2023; 52: 8536-8539
- 55a Eisenberger P, Gischig S, Togni A. Chem Eur J 2006; 12: 2579-2586
- 55b Zhdankin VV, Kuehl CJ, Krasutsky AP, Formaneck MS, Bolz JT. Tetrahedron Lett 1994; 35: 9677-9680
- 56a Charpentier J, Früh N, Togni A. Chem Rev 2015; 115: 650-682
- 56b Simonet-Davin R, Waser J. Synthesis 2022; 55: 1652-1661
- 57a Mizuta S, Verhoog S, Wang X, Shibata N, Gouverneur V, Médebielle M. J Fluor Chem 2013; 155: 124-131
- 57b Yasu Y, Koike T, Akita M. Angew Chem Int Ed 2012; 51: 9567-9571
- 58 Alazet S, Preindl J, Simonet-Davin R. et al. J Org Chem 2018; 83: 12334-12356
- 59 Borrel J, Waser J. Beilstein J Org Chem 2024; 20: 701-713
The conversion from SCE to Fc+/0has been done by extracting –038 V, see ref:
The oxidation and reduction potentials have been misassigned in ref: