Subscribe to RSS
DOI: 10.1055/a-2649-9402
Peeling Back the Layers of the Bleomycin Model of Lung Fibrosis: Lessons Learned, Factors to Consider, and Future Directions
Funding This study was funded by the California Institute for Regenerative Medicine (grant no.: DISC0-13788) and U.S. Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute (grant nos.: K01HL174822 [P.B.], K08HL169723 [N.A.], R01 HL168138 [R.K.], R35HL150767 [C.J.L.S.], RO1 HL147860 [E.R.], RO1 HL149741[E.R.], RO1 HL166250 [E.R.], and U01HL134766 [C.J.L.S.].

Abstract
Bleomycin-induced lung injury remains the most widely used and well-characterized experimental model for studying pulmonary fibrosis, particularly idiopathic pulmonary fibrosis (IPF). This review provides a comprehensive analysis of the bleomycin model's utility, phases, variability, and translational relevance. Bleomycin administration in rodents induces acute epithelial injury followed by inflammation, fibroblast activation, extracellular matrix deposition, and eventual fibrosis. The model progresses through defined stages, acute inflammation (days 1–7), fibrogenesis (days 7–28), and in most cases, spontaneous resolution (days 42–63), making it suitable for understanding temporal aspects of fibrosis and repair, the cell populations involved, and the signaling mechanisms involved. Despite its advantages, the single-dose model lacks key features of human IPF, including persistent fibrosis, honeycomb cysts, and fibroblastic foci. Repetitive dosing and the use of aged mice have improved chronicity and recapitulation of progressive disease and observation of the expansion of aberrant epithelial cell populations in simple cyst structures. This review discusses route-specific effects, strain and sex susceptibilities, and the growing role of microbiome and genetic background in influencing fibrosis outcomes. It also highlights cellular responses across epithelial cell populations, fibroblasts, endothelial cells, and immune cell populations. Although limitations exist in this model—such as reversibility and incomplete modeling of human pathology—bleomycin remains invaluable for mechanistic studies and preclinical drug screening. Importantly, all FDA-approved antifibrotic drugs demonstrated efficacy in bleomycin models prior to clinical success. The review advocates for careful model selection, incorporation of persistent fibrosis models, and parallel use of human-relevant systems to enhance translational relevance in pulmonary fibrosis research.
Publication History
Article published online:
13 August 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Allawzi A, Elajaili H, Redente EF, Nozik-Grayck E. Oxidative toxicology of bleomycin: role of the extracellular redox environment. Curr Opin Toxicol 2019; 13: 68-73
- 2 Meadors M, Floyd J, Perry MC. Pulmonary toxicity of chemotherapy. Semin Oncol 2006; 33 (01) 98-105
- 3 Jenkins RG, Moore BB, Chambers RC. et al; ATS Assembly on Respiratory Cell and Molecular Biology. An official American Thoracic Society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol 2017; 56 (05) 667-679
- 4 Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. Int J Biochem Cell Biol 2008; 40 (03) 362-382
- 5 Liu T, De Los Santos FG, Phan SH. The bleomycin model of pulmonary fibrosis. Methods Mol Biol 2017; 1627: 27-42
- 6 B Moore B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 2013; 49 (02) 167-179
- 7 Kolb P, Upagupta C, Vierhout M. et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J 2020; 55 (06) 1901105
- 8 Adamson IY, Bowden DH. The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 1974; 77 (02) 185-197
- 9 Jones AW, Reeve NL. Ultrastructural study of bleomycin-induced pulmonary changes in mice. J Pathol 1978; 124 (04) 227-233
- 10 Adamson IY. Pulmonary toxicity of bleomycin. Environ Health Perspect 1976; 16: 119-126
- 11 Redente EF, Keith RC, Janssen W. et al. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol 2014; 50 (04) 825-837
- 12 Bordag N, Biasin V, Schnoegl D. et al. Machine learning analysis of the bleomycin mouse model reveals the compartmental and temporal inflammatory pulmonary fingerprint. iScience 2020; 23 (12) 101819
- 13 Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol 2002; 83 (03) 111-119
- 14 Redente EF, Chakraborty S, Sajuthi S. et al. Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight 2020; 6 (01) e141618
- 15 Tighe RM, Redente EF, Yu YR. et al. Improving the quality and reproducibility of flow cytometry in the lung. An official American Thoracic Society workshop report. Am J Respir Cell Mol Biol 2019; 61 (02) 150-161
- 16 Misharin AV, Morales-Nebreda L, Reyfman PA. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214 (08) 2387-2404
- 17 McCubbrey AL, Barthel L, Mohning MP. et al. Deletion of c-FLIP from CD11bhi macrophages prevents development of bleomycin-induced lung fibrosis. Am J Respir Cell Mol Biol 2018; 58 (01) 66-78
- 18 King EM, Zhao Y, Moore CM. et al. Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung. JCI Insight 2024; 9 (24) e182700
- 19 Aran D, Looney AP, Liu L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20 (02) 163-172
- 20 Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest 2019; 129 (07) 2619-2628
- 21 Gibbons MA, MacKinnon AC, Ramachandran P. et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med 2011; 184 (05) 569-581
- 22 Li R, Bernau K, Sandbo N, Gu J, Preissl S, Sun X. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 2018; 7: e36865
- 23 Brass DM, Yang IV, Kennedy MP. et al. Fibroproliferation in LPS-induced airway remodeling and bleomycin-induced fibrosis share common patterns of gene expression. Immunogenetics 2008; 60 (07) 353-369
- 24 Xie T, Wang Y, Deng N. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep 2018; 22 (13) 3625-3640
- 25 Tsukui T, Wolters PJ, Sheppard D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 2024; 631 (8021) 627-634
- 26 Tsukui T, Sun KH, Wetter JB. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun 2020; 11 (01) 1920
- 27 Yunt ZX, Mohning MP, Barthel L. et al. Kinetics of the angiogenic response in lung endothelium following acute inflammatory injury with bleomycin. Exp Lung Res 2014; 40 (08) 415-425
- 28 Gilhodes JC, Julé Y, Kreuz S, Stierstorfer B, Stiller D, Wollin L. Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis. PLoS One 2017; 12 (01) e0170561
- 29 Dobrinskikh E, Estrella AM, Hennessy CE. et al. Genes, other than Muc5b, play a role in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 321 (02) L440-L450
- 30 Redente EF, Kopf KW, Bahadur AN, Robichaud A, Lundblad LK, McDonald LT. Application-specific approaches to MicroCT for evaluation of mouse models of pulmonary disease. PLoS One 2023; 18 (02) e0281452
- 31 El Agha E, Moiseenko A, Kheirollahi V. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 2017; 20 (04) 571
- 32 Hecker L, Logsdon NJ, Kurundkar D. et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 2014; 6 (231) 231ra47
- 33 Redente EF, Jacobsen KM, Solomon JJ. et al. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 301 (04) L510-L518
- 34 Stout-Delgado HW, Cho SJ, Chu SG. et al. Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am J Respir Cell Mol Biol 2016; 55 (02) 252-263
- 35 Xu J, Gonzalez ET, Iyer SS. et al. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice. J Gerontol A Biol Sci Med Sci 2009; 64 (07) 731-739
- 36 Podolsky MJ, Yang CD, Valenzuela CL. et al. Age-dependent regulation of cell-mediated collagen turnover. JCI Insight 2020; 5 (10) e137519
- 37 Weckerle J, Mayr CH, Fundel-Clemens K. et al. Transcriptomic and proteomic changes driving pulmonary fibrosis resolution in young and old mice. Am J Respir Cell Mol Biol 2023; 69 (04) 422-440
- 38 Degryse AL, Tanjore H, Xu XC. et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 299 (04) L442-L452
- 39 Redente EF, Black BP, Backos DS. et al. Persistent, progressive pulmonary fibrosis and epithelial remodeling in mice. Am J Respir Cell Mol Biol 2021; 64 (06) 669-676
- 40 Cooley JC, Javkhlan N, Wilson JA. et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 2023; 8 (03) e163762
- 41 Gul A, Yang F, Xie C. et al. Pulmonary fibrosis model of mice induced by different administration methods of bleomycin. BMC Pulm Med 2023; 23 (01) 91
- 42 Chua F, Gauldie J, Laurent GJ. Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 2005; 33 (01) 9-13
- 43 Walters DM, Kleeberger SR. Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protocols Pharmacol 2008; Chapter 5: Unit 5.46
- 44 Seo Y, Qiu L, Magnen M. et al. Optimizing anesthesia and delivery approaches for dosing into lungs of mice. Am J Physiol Lung Cell Mol Physiol 2023; 325 (02) L262-L269
- 45 Nieuw Amerongen AV, Oderkerk CH, Veerman EC. Influence of phytate on the adsorption of human salivary mucins onto hydroxyapatite. J Biol Buccale 1988; 16 (04) 203-208
- 46 Egger C, Cannet C, Gérard C. et al. Administration of bleomycin via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as quantified by UTE-MRI and histology. PLoS One 2013; 8 (05) e63432
- 47 Cao Z, Lis R, Ginsberg M. et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med 2016; 22 (02) 154-162
- 48 Headley L, Bi W, Wilson C. et al. Low-dose administration of bleomycin leads to early alterations in lung mechanics. Exp Physiol 2018; 103 (12) 1692-1703
- 49 Lazo JS, Humphreys CJ. Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci U S A 1983; 80 (10) 3064-3068
- 50 Liang M, Lv J, Zou L. et al. A modified murine model of systemic sclerosis: bleomycin given by pump infusion induced skin and pulmonary inflammation and fibrosis. Lab Invest 2015; 95 (03) 342-350
- 51 Harrison Jr JH, Lazo JS. High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J Pharmacol Exp Ther 1987; 243 (03) 1185-1194
- 52 Shea BS, Brooks SF, Fontaine BA, Chun J, Luster AD, Tager AM. Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am J Respir Cell Mol Biol 2010; 43 (06) 662-673
- 53 Shea BS, Probst CK, Brazee PL. et al. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017; 2 (09) e86608
- 54 Gendron DR, Lemay AM, Lecours PB. et al. FTY720 promotes pulmonary fibrosis when administered during the remodelling phase following a bleomycin-induced lung injury. Pulm Pharmacol Ther 2017; 44: 50-56
- 55 Grandi A, Ferrini E, Zoboli M. et al. A mouse model of progressive lung fibrosis with cutaneous involvement induced by a combination of oropharyngeal and osmotic minipump bleomycin delivery. Am J Physiol Lung Cell Mol Physiol 2024; 326 (06) L736-L753
- 56 Schrier DJ, Kunkel RG, Phan SH. The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am Rev Respir Dis 1983; 127 (01) 63-66
- 57 Voltz JW, Card JW, Carey MA. et al. Male sex hormones exacerbate lung function impairment after bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2008; 39 (01) 45-52
- 58 Lamichhane R, Patial S, Saini Y. Higher susceptibility of males to bleomycin-induced pulmonary inflammation is associated with sex-specific transcriptomic differences in myeloid cells. Toxicol Appl Pharmacol 2022; 454: 116228
- 59 Raslan AA, Pham TX, Lee J. et al. Lung injury-induced activated endothelial cell states persist in aging-associated progressive fibrosis. Nat Commun 2024; 15 (01) 5449
- 60 Klee S, Picart-Armada S, Wenger K. et al. Transcriptomic and proteomic profiling of young and old mice in the bleomycin model reveals high similarity. Am J Physiol Lung Cell Mol Physiol 2023; 324 (03) L245-L258
- 61 Chioma OS, Mallott EK, Chapman A. et al. Gut microbiota modulates lung fibrosis severity following acute lung injury in mice. Commun Biol 2022; 5 (01) 1401
- 62 Yoon YM, Hrusch CL, Fei N. et al. Gut microbiota modulates bleomycin-induced acute lung injury response in mice. Respir Res 2022; 23 (01) 337
- 63 O'Dwyer DN, Ashley SL, Gurczynski SJ. et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med 2019; 199 (09) 1127-1138
- 64 Yang D, Chen X, Wang J. et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity 2019; 50 (03) 692-706.e7
- 65 Wuyts WA, Willems S, Vos R. et al. Azithromycin reduces pulmonary fibrosis in a bleomycin mouse model. Exp Lung Res 2010; 36 (10) 602-614
- 66 Rudders RA, Hensley GT. Bleomycin pulmonary toxicity. Chest 1973; 63 (04) 627-628
- 67 Usuki J, Fukuda Y. Evolution of three patterns of intra-alveolar fibrosis produced by bleomycin in rats. Pathol Int 1995; 45 (08) 552-564
- 68 Munger JS, Huang X, Kawakatsu H. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96 (03) 319-328
- 69 Bauer Y, Tedrow J, de Bernard S. et al. A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 52 (02) 217-231
- 70 Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294 (02) L152-L160
- 71 Borzone G, Moreno R, Urrea R, Meneses M, Oyarzún M, Lisboa C. Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2001; 163 (07) 1648-1653
- 72 Limjunyawong N, Mitzner W, Horton MR. A mouse model of chronic idiopathic pulmonary fibrosis. Physiol Rep 2014; 2 (02) e00249
- 73 Raghu G, Anstrom KJ, King Jr TE, Lasky JA, Martinez FJ. Idiopathic Pulmonary Fibrosis Clinical Research Network. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med 2012; 366 (21) 1968-1977
- 74 Song X, Yu W, Guo F. Pirfenidone suppresses bleomycin-induced pulmonary fibrosis and periostin expression in rats. Exp Ther Med 2018; 16 (03) 1800-1806
- 75 King Jr TE, Bradford WZ, Castro-Bernardini S. et al; ASCEND Study Group. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2083-2092
- 76 Richeldi L, du Bois RM, Raghu G. et al; INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2071-2082
- 77 Kathiriya JJ, Wang C, Zhou M. et al. Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nat Cell Biol 2022; 24 (01) 10-23
- 78 Xu Y, Mizuno T, Sridharan A. et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 2016; 1 (20) e90558
- 79 Parimon T, Chen P, Stripp BR. et al. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325 (02) C483-C495
- 80 Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014; 507 (7491) 190-194
- 81 Miyata R, Hasegawa K, Menju T. et al. Lung fibrogenic microenvironment in mouse reconstitutes human alveolar structure and lung tumor. iScience 2022; 25 (09) 104912
- 82 Wang F, Ting C, Riemondy KA. et al. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J Clin Invest 2023; 133 (22) e165612
- 83 Chapman HA. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 2011; 73: 413-435
- 84 Thamsen M, Ghosh R, Auyeung VC. et al. Small molecule inhibition of IRE1α kinase/RNase has anti-fibrotic effects in the lung. PLoS One 2019; 14 (01) e0209824
- 85 Auyeung VC, Downey MS, Thamsen M. et al. IRE1α drives lung epithelial progenitor dysfunction to establish a niche for pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2022; 322 (04) L564-L580
- 86 Katzen J, Wagner BD, Venosa A. et al. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight 2019; 4 (06) e126125
- 87 Zhao M, Wang L, Wang M. et al. Targeting fibrosis, mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7 (01) 206
- 88 Sisson TH, Mendez M, Choi K. et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 2010; 181 (03) 254-263
- 89 McCall AS, Gutor S, Tanjore H. et al. Hypoxia-inducible factor 2 regulates alveolar regeneration after repetitive injury in three-dimensional cellular and in vivo models. Sci Transl Med 2025; 17 (780) eadk8623
- 90 Garcia O, Hiatt MJ, Lundin A. et al. Targeted type 2 alveolar cell depletion. A dynamic functional model for lung injury repair. Am J Respir Cell Mol Biol 2016; 54 (03) 319-330
- 91 Nureki SI, Tomer Y, Venosa A. et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Invest 2018; 128 (09) 4008-4024
- 92 Povedano JM, Martinez P, Flores JM, Mulero F, Blasco MA. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep 2015; 12 (02) 286-299
- 93 Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 2022; 12: 797292
- 94 Li X, Zhang H, Soledad-Conrad V, Zhuang J, Uhal BD. Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. Am J Physiol Lung Cell Mol Physiol 2003; 284 (03) L501-L507
- 95 Drakopanagiotakis F, Xifteri A, Polychronopoulos V, Bouros D. Apoptosis in lung injury and fibrosis. Eur Respir J 2008; 32 (06) 1631-1638
- 96 Lawson WE, Polosukhin VV, Stathopoulos GT. et al. Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin. Am J Pathol 2005; 167 (05) 1267-1277
- 97 Aoshiba K, Tsuji T, Nagai A. Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J 2003; 22 (03) 436-443
- 98 Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72: 112-127
- 99 Mercer PF, Johns RH, Scotton CJ. et al. Pulmonary epithelium is a prominent source of proteinase-activated receptor-1-inducible CCL2 in pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179 (05) 414-425
- 100 Yamada Z, Nishio J, Motomura K. et al. Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine fibrosing interstitial lung disease. Front Immunol 2022; 13: 935114
- 101 Kadur Lakshminarasimha Murthy P, Sontake V, Tata A. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 2022; 604 (7904) 111-119
- 102 Tashiro J, Rubio GA, Limper AH. et al. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne) 2017; 4: 118
- 103 Vats A, Chaturvedi P. The regenerative power of stem cells: treating bleomycin-induced lung fibrosis. Stem Cells Cloning 2023; 16: 43-59
- 104 Habermann AC, Gutierrez AJ, Bui LT. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv 2020; 6 (28) eaba1972
- 105 Fang Y, Chung SSW, Xu L. et al. RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition. Nature 2025; 640 (8057) 221-230
- 106 Li Q, Wang Y, Ji L. et al. Cellular and molecular mechanisms of fibrosis and resolution in bleomycin-induced pulmonary fibrosis mouse model revealed by spatial transcriptome analysis. Heliyon 2023; 9 (12) e22461
- 107 Lingampally A, Truchi M, Mauduit O. et al. Evidence for a lipofibroblast-to-Cthrc1 + myofibroblast reversible switch during the development and resolution of lung fibrosis in young mice. Eur Respir J 2025; 65 (02) 2300482
- 108 Tan Q, Link PA, Meridew JA. et al. Spontaneous lung fibrosis resolution reveals novel antifibrotic regulators. Am J Respir Cell Mol Biol 2021; 64 (04) 453-464
- 109 Frangogiannis NG. Fibroblast-extracellular matrix interactions in tissue fibrosis. Curr Pathobiol Rep 2016; 4 (01) 11-18
- 110 Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 2014; 5: 123
- 111 Tan C, Jiang M, Wong SS. et al. Soluble Thy-1 reverses lung fibrosis via its integrin-binding motif. JCI Insight 2019; 4 (21) e131152
- 112 Zhou Y, Huang X, Hecker L. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest 2013; 123 (03) 1096-1108
- 113 Hagimoto N, Kuwano K, Inoshima I. et al. TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol 2002; 168 (12) 6470-6478
- 114 Schiller HB, Fernandez IE, Burgstaller G. et al. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 2015; 11 (07) 819
- 115 Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16 (01) 11-31
- 116 Liu X, Wong SS, Taype CA. et al. Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution. Lab Invest 2017; 97 (03) 256-267
- 117 Schafer MJ, White TA, Iijima K. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017; 8: 14532
- 118 Kato K, Logsdon NJ, Shin YJ. et al. Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging. Am J Respir Cell Mol Biol 2020; 62 (05) 633-644
- 119 Atabai K, Yang CD, Podolsky MJ. You say you want a resolution (of fibrosis). Am J Respir Cell Mol Biol 2020; 63 (04) 424-435
- 120 Lingampally A, Truchi M, Shi X. et al. Unraveling alveolar fibroblast and activated myofibroblast heterogeneity and differentiation trajectories during lung fibrosis development and resolution in young and old mice. Aging Cell 2025; 24 (05) e14503
- 121 Kato S, Inui N, Hakamata A. et al. Changes in pulmonary endothelial cell properties during bleomycin-induced pulmonary fibrosis. Respir Res 2018; 19 (01) 127
- 122 Strunz M, Simon LM, Ansari M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun 2020; 11 (01) 3559
- 123 Murray LA, Habiel DM, Hohmann M. et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight 2017; 2 (16) e92192
- 124 Baluk P, Naikawadi RP, Kim S. et al. Lymphatic proliferation ameliorates pulmonary fibrosis after lung injury. Am J Pathol 2020; 190 (12) 2355-2375
- 125 Caporarello N, Meridew JA, Aravamudhan A. et al. Vascular dysfunction in aged mice contributes to persistent lung fibrosis. Aging Cell 2020; 19 (08) e13196
- 126 Caporarello N, Lee J, Pham TX. et al. Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis. Nat Commun 2022; 13 (01) 4170
- 127 Tager AM, LaCamera P, Shea BS. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 2008; 14 (01) 45-54
- 128 Knipe RS, Spinney JJ, Abe EA. et al. Endothelial-specific loss of sphingosine-1-phosphate receptor 1 increases vascular permeability and exacerbates bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2022; 66 (01) 38-52
- 129 Adams TS, Schupp JC, Poli S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv 2020; 6 (28) eaba1983
- 130 Ji WJ, Ma YQ, Zhou X. et al. Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J Immunol Methods 2014; 403 (1-2): 7-16
- 131 Gasse P, Mary C, Guenon I. et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 2007; 117 (12) 3786-3799
- 132 Gasse P, Riteau N, Charron S. et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 2009; 179 (10) 903-913
- 133 Griffith JW, Faustino LD, Cottrell VI. et al. Regulatory T cell-derived IL-1Ra suppresses the innate response to respiratory viral infection. Nat Immunol 2023; 24 (12) 2091-2107
- 134 Cohen ML, Brumwell AN, Ho TC. et al. A fibroblast-dependent TGF-β1/sFRP2 noncanonical Wnt signaling axis promotes epithelial metaplasia in idiopathic pulmonary fibrosis. J Clin Invest 2024; 134 (18) e174598
- 135 Kinder BW, Brown KK, Schwarz MI, Ix JH, Kervitsky A, King Jr TE. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest 2008; 133 (01) 226-232
- 136 Moore BB, Paine III R, Christensen PJ. et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol 2001; 167 (08) 4368-4377
- 137 Ucero AC, Bakiri L, Roediger B. et al. Fra-2-expressing macrophages promote lung fibrosis in mice. J Clin Invest 2019; 129 (08) 3293-3309
- 138 Lv J, Gao H, Ma J. et al. Dynamic atlas of immune cells reveals multiple functional features of macrophages associated with progression of pulmonary fibrosis. Front Immunol 2023; 14: 1230266
- 139 Zhou Y, Peng H, Sun H. et al. Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in mammalian lung fibrosis. Sci Transl Med 2014; 6 (240) 240ra76
- 140 Unterman A, Zhao AY, Neumark N. et al. Single-cell profiling reveals immune aberrations in progressive idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2024; 210 (04) 484-496
- 141 Reyfman PA, Walter JM, Joshi N. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 2019; 199 (12) 1517-1536
- 142 Matsuhira T, Nishiyama O, Tabata Y. et al. A novel phosphodiesterase 4 inhibitor, AA6216, reduces macrophage activity and fibrosis in the lung. Eur J Pharmacol 2020; 885: 173508
- 143 Matsuhira T, Nishiyama O, Tabata Y. et al. The phosphodiesterase 4 inhibitor AA6216 suppresses activity of fibrosis-specific macrophages. Biochem Biophys Rep 2021; 28: 101118
- 144 Richeldi L, Azuma A, Cottin V. et al; 1305-0013 Trial Investigators. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med 2022; 386 (23) 2178-2187
- 145 Helene M, Lake-Bullock V, Zhu J, Hao H, Cohen DA, Kaplan AM. T cell independence of bleomycin-induced pulmonary fibrosis. J Leukoc Biol 1999; 65 (02) 187-195
- 146 Schnell A, Littman DR, Kuchroo VKT. TH17 cell heterogeneity and its role in tissue inflammation. Nat Immunol 2023; 24 (01) 19-29
- 147 Wilson MS, Madala SK, Ramalingam TR. et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med 2010; 207 (03) 535-552
- 148 Mi S, Li Z, Yang HZ. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol 2011; 187 (06) 3003-3014
- 149 Zhang J, Wang D, Wang L. et al. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 2019; 316 (03) L487-L497
- 150 Celada LJ, Kropski JA, Herazo-Maya JD. et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci Transl Med 2018; 10 (460) eaar8356
- 151 Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56 (02) 240-255
- 152 Liu Q, Dwyer GK, Zhao Y. et al. IL-33-mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury. JCI Insight 2019; 4 (06) e123919
- 153 Okamoto M, Kuratani A, Okuzaki D. et al. Tff1-expressing Tregs in lung prevent exacerbation of bleomycin-induced pulmonary fibrosis. Front Immunol 2024; 15: 1440918
- 154 Farhat A, Radhouani M, Deckert F. et al. An aging bone marrow exacerbates lung fibrosis by fueling profibrotic macrophage persistence. Sci Immunol 2025; 10 (105) eadk5041
- 155 Kotsianidis I, Nakou E, Bouchliou I. et al. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179 (12) 1121-1130
- 156 Reilkoff RA, Peng H, Murray LA. et al. Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-β1-induced pulmonary fibrosis. Am J Respir Crit Care Med 2013; 187 (02) 180-188
- 157 Heitmann L, Rani R, Dawson L. et al. TGF-β-responsive myeloid cells suppress type 2 immunity and emphysematous pathology after hookworm infection. Am J Pathol 2012; 181 (03) 897-906
- 158 Walker JA, McKenzie ANJ. TH2 cell development and function. Nat Rev Immunol 2018; 18 (02) 121-133
- 159 Gieseck III RL, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 2018; 18 (01) 62-76
- 160 Vannella KM, Ramalingam TR, Borthwick LA. et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci Transl Med 2016; 8 (337) 337ra65
- 161 Belperio JA, Dy M, Burdick MD. et al. Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2002; 27 (04) 419-427
- 162 Singh B, Kasam RK, Sontake V, Wynn TA, Madala SK. Repetitive intradermal bleomycin injections evoke T-helper cell 2 cytokine-driven pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2017; 313 (05) L796-L806
- 163 Karo-Atar D, Bordowitz A, Wand O. et al. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol 2016; 9 (01) 240-253
- 164 Izbicki G, Or R, Christensen TG. et al. Bleomycin-induced lung fibrosis in IL-4-overexpressing and knockout mice. Am J Physiol Lung Cell Mol Physiol 2002; 283 (05) L1110-L1116
- 165 Huaux F, Liu T, McGarry B, Ullenbruch M, Phan SH. Dual roles of IL-4 in lung injury and fibrosis. J Immunol 2003; 170 (04) 2083-2092
- 166 Park SW, Ahn MH, Jang HK. et al. Interleukin-13 and its receptors in idiopathic interstitial pneumonia: clinical implications for lung function. J Korean Med Sci 2009; 24 (04) 614-620
- 167 Raghu G, Richeldi L, Crestani B. et al. SAR156597 in idiopathic pulmonary fibrosis: a phase 2 placebo-controlled study (DRI11772). Eur Respir J 2018; 52 (06) 1801130
- 168 Maher TM, Costabel U, Glassberg MK. et al. Phase 2 trial to assess lebrikizumab in patients with idiopathic pulmonary fibrosis. Eur Respir J 2021; 57 (02) 1902442
- 169 Parker JM, Glaspole IN, Lancaster LH. et al. A phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2018; 197 (01) 94-103
- 170 Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J 2011; 37 (02) 356-363
- 171 Collard HR, Ryerson CJ, Corte TJ. et al. Acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med 2016; 194 (03) 265-275
- 172 Ahangari F, Becker C, Foster DG. et al. Saracatinib, a selective Src kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis. Am J Respir Crit Care Med 2022; 206 (12) 1463-1479
- 173 Pan L, Cheng Y, Yang W. et al. Nintedanib ameliorates bleomycin-induced pulmonary fibrosis, inflammation, apoptosis, and oxidative stress by modulating PI3K/Akt/mTOR pathway in mice. Inflammation 2023; 46 (04) 1531-1542
- 174 Decaris ML, Schaub JR, Chen C. et al. Dual inhibition of αvβ6 and αvβ1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res 2021; 22 (01) 265
- 175 Horan GS, Wood S, Ona V. et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008; 177 (01) 56-65
- 176 Herrmann FE, Hesslinger C, Wollin L, Nickolaus P. BI 1015550 is a PDE4B inhibitor and a clinical drug candidate for the oral treatment of idiopathic pulmonary fibrosis. Front Pharmacol 2022; 13: 838449