Subscribe to RSS
DOI: 10.1055/a-2615-0057
Thiourea Dioxide-Mediated N−O Bond Cleavage in Hydroxamic Acids for the Selective Synthesis of Primary Amides
Supported by: National Natural Science Foundation of China NSFC22278368
Supported by: Zhejiang Provincial Natural Science Foundation LY21B060006
Funding Information This study was supported by the National Natural Science Foundation of China (NSFC22278368) and the Zhejiang Provincial Natural Science Foundation (No. LY21B060006).

Abstract
Thiourea dioxide (TDO), a sustainable and cost-effective industrial compound, has been demonstrated as a bifunctional reagent for efficient hydroxyl activation and N–O bond cleavage of hydroxamic acids, enabling the efficient synthesis of primary amides with excellent functional group compatibility. This straightforward process has been successfully applied to the gram-scale synthesis of niacinamide. Furthermore, mechanistic studies suggested that the N–O bond cleavage involves a cascade process of sulfenylation and reduction. This novel and robust transformation gives a new lease of the synthetic utility of TDO as an innocuous and versatile reagent in organic chemistry.
Publication History
Received: 27 March 2025
Accepted after revision: 16 May 2025
Accepted Manuscript online:
16 May 2025
Article published online:
23 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Guo X, Facchetti A, Marks TJ. Chem Rev 2014; 114: 8943
- 1b Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 1c Boström J, Brown DG, Young RJ, Keserü GM. Nat Rev Drug Discovery 2018; 17: 709
- 1d Zhang DW, Zhao X, Hou JL, Li ZT. Chem Rev 2012; 112: 5271
- 2a Schmidt KF. Angew Chem 1923; 36: 511
- 2b Liu J, Zhang C, Zhang Z. et al. Science 2020; 367: 281
- 2c Veitch GE, Bridgwood KL, Ley SV. Org Lett 2008; 10: 3623
- 2d Shie JJ, Fang JM. J Org Chem 2003; 68: 1158
- 3a Yamaguchi K, Matsushita M, Mizuno N. Angew Chem Int Ed 2004; 43: 1576
- 3b Marcé P, Lynch J, Blacker AJ, Williams JMJ. Chem Commun 2016; 52: 1436
- 3c Liardo E, González-Fernández R, Ríos-Lombardía N. et al. ChemCatChem 2018; 10: 4676
- 3d Wang K, Jiang P, Yang M. et al. Green Chem 2019; 21: 2448
- 3e Wang Q, Lv M, Liu J. et al. ChemSusChem 2019; 12: 3043
- 4a Chen J, Xia Y, Lee S. Org Lett 2020; 22: 3504
- 4b Lee SE, Kim Y, Lee YH, Lim HN. Org Lett 2024; 26: 3646
- 4c Qi X, Ai HJ, Cai CX. et al. Eur J Org Chem 2017; 7222
- 4d Veatch AM, Alexanian E. J Chem Sci 2020; 11: 7210
- 4e Liu Y, Lei C, Xu XY, Shao XS, Li Z. Chin Chem Lett 2016; 27: 321
- 5a Xiong N, Dong Y, Xu B, Li Y, Zeng R. Org Lett 2022; 24: 4766
- 5b Yoo WJ, Li CJ. J Am Chem Soc 2006; 128: 13064
- 5c Whittaker AM, Dong VM. Angew Chem Int Ed 2015; 54: 1312
- 5d Chen C, Kim MH, Hong SH. Org Chem Front 2015; 2: 241
- 5e Zultanski SL, Zhao J, Stahl SS. J Am Chem Soc 2016; 138: 6416
- 6a Ruiz-Castillo P, Buchwald SL. Chem Rev 2016; 116: 12564
- 6b Klapars A, Huang X, Buchwald SL. J Am Chem Soc 2002; 124: 7421
- 6c Klapars A, Antilla JC, Huang X, Buchwald SL. J Am Chem Soc 2001; 123: 7727
- 7a Chen J, Xia Y, Lee S. Org Lett 2020; 22: 3504-3508
- 7b Yu S, Shin T, Zhang M, Xia Y, Kim H, Lee S. Org Lett 2018; 20: 7563-7566
- 7c Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat Commun 2016; 7: 11554
- 7d Allen CL, Atkinson BN, Williams JMJ. Angew Chem Int Ed 2012; 51: 1383-1386
- 7e Zhang M, Imm S, Bähn S, Neubert L, Neumann H, Beller M. Angew Chem Int Ed 2012; 51: 3905-3909
- 7f Eldred SE, Stone DA, Gellman SH, Stahl SS. J Am Chem Soc 2003; 125: 3422-3423
- 8a Citarella A, Moi D, Pinzi L, Bonanni D, Rastelli G. ACS Omega 2021; 6: 21843
- 8b Ma B, Wu P, Wang X. et al. Angew Chem Int Ed 2019; 58: 13335
- 8c Thomas M, Alsarraf J, Araji N. et al. Org Biomol Chem 2019; 17: 5420
- 8d Keth J, Johann T, Frey H. Biomacromolecules 2020; 21: 2546
- 9 Wathen SP, Czarnik AW. Bioorg Med Chem Lett 1993; 3: 1245
- 10a Fisher LE, Caroon JM. Jahangir; et al. J Org Chem 1993; 58: 3643
- 10b Mattingly PG, Miller MJ. J Org Chem 1980; 45: 410
- 11a Ritter AR, Miller MJ. J Org Chem 1994; 59: 4602
- 11b Cicchi S, Goti A, Brandi A, Guarna A, De Sarlo F. Tetrahedron Lett 1990; 31: 3351
- 12a Yus M, Radivoy G, Alonso F. Synthesis 2001; 2021: 914
- 12b Taillier C, Bellosta V, Meyer C, Cossy J. Org Lett 2004; 6: 2145
- 13 Kresze G, Schulz G. Tetrahedron 1961; 12: 7
- 14 You TJ, Zhang MS, Chen JH, Liu HM, Xia YZ. Org Chem Front 2021; 8: 112
- 15 Bae H, Park J, Yoon R, Lee S, Son J. RSC Adv 2024; 14: 9440
- 16 Wang S, Zhao X, Zhang-Negrerie D, Du Y. Org Chem Front 2019; 6: 347
- 17 Wang RS, Chen YF, Fei BJ. et al. Org Lett 2023; 25: 2970
- 18a Makarov SV, Horvath AK, Silaghi-Dumitrescu R, Gao Q. Chem Eur J 2014; 20: 14164
- 18b Chaudhary P, Gupta S, Sureshbabu P, Sabiah S, Kandasamy J. Green Chem 2016; 18: 6215
- 18c Mendonca PV, Ribeiro JPM, Abreu CMR. et al. ACS Macro Lett 2019; 8: 315
- 18d Makarov SV. Russ Chem Rev 2001; 70: 885
- 19a Kumar S, Verma S, Jain SL, Sain B. Tetrahedron Lett 2011; 52: 3393
- 19b Verma S, Jain SL, Sain B. Tetrahedron Lett 2010; 51: 6897
- 19c Verma S, Jain SL. Tetrahedron Lett 2012; 53: 2595
- 19d Verma S, Jain SL. Tetrahedron Lett 2012; 53: 6055
- 19e Verma S, Kumar S, Jain SL, Sain B. Org Biomol Chem 2011; 9: 6943
- 19f Verma S, Singh R, Tripathi D. et al. RSC Adv 2013; 3: 4184
- 20 Abdel-Halim ES, Al-Deyab SS. React Funct Polym 2014; 75: 1
- 21 Santos RB, Brocksom TJ, Brocksom U. Tetrahedron Lett 1997; 38: 745
- 22a Hu Y, Du Y, Yang J. et al. Carbohydr Polym 2007; 67: 66-77
- 22b Jursic BS, Neumann D, McPherson A. Synthesis 2000; 12: 1656-1658
- 22c Mantri P, Duffy DE, Kettner CA. J Org Chem 1996; 61: 5690-5692
- 23 Song PD, Cui Z, Meng TT. et al. Asian J Org Chem 2024; 13: e202400291