Subscribe to RSS
DOI: 10.1055/a-2608-2142
Electrochemical Synthesis of Ketones via Metal-Free Decarboxylative Coupling of Vinyl Azides and NHPI Esters
S.S. acknowledge support from the Anusandhan National Research Foundation (ANRF, formerly SERB), India (CRG/2023/00713) and Rashtriya Uchchatar Shiksha Abhiyan (RUSA 2.0, MLSU-Udaipur). S.S.B. thanks the Banaras Hindu University for providing financial support as seed grant under Institute of Eminence Scheme. B.J. is thankful to the University Grants Commission (UGC) for the JRF fellowship.

Abstract
We introduce a metal-free method for C–C bond formation by coupling NHPI esters with vinyl azides through electrochemical synthesis. By converting carboxylic acids into radical-initiating NHPI esters, our approach achieves efficient C(sp³)–C(sp3) bond formation without needing metal catalysts. This method is highly adaptable, enabling the coupling of various NHPI esters with a broad range of vinyl azides, including those with halide or heteroatom substitutions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2608-2142.
- Supporting Information
Publication History
Received: 23 March 2025
Accepted after revision: 14 May 2025
Accepted Manuscript online:
14 May 2025
Article published online:
18 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Gallezot P. Chem. Soc. Rev. 2012; 41: 1538
- 1b Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 2a Cornella J, Larrosa I. Synthesis 2012; 44: 653
- 2b Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
- 2c Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 3a Budac D, Wan P. J. Photochem. Photobiol. 1992; 67: 135
- 3b Griesbeck AG, Kramer W, Oelgemöller M. Synlett 1999; 1169
- 5a Hunsdiecker H, Hunsdiecker C, Vogt E. US2176181, 1939
- 5b Rice FA. H. J. Am. Chem. Soc. 1956; 78: 3173
- 5c Das JP, Roy S. J. Org. Chem. 2002; 67: 7861
- 6a Barton DH. R, Faro HP, Serebryakov EP, Woolsey NF. J. Chem. Soc. 1965; 2438
- 6b Barton DH. R, Dowlatshahi HA, Motherwell WB, Villemin D. J. Chem. Soc. 1980; 15: 732
- 7a Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. ACS Catal. 2021; 11: 1640
- 7b Zhang Y, Ma D, Zhang Z. Arab. J. Chem. 2022; 15: 103922
- 8 Murarka S. Adv. Synth. Catal. 2018; 360: 1735
- 9 Sandfort F, Cornella J, Wimmer L, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 3319
- 10a Fu J, Zanoni G, Anderson EA, Bi X. Chem. Soc. Rev. 2017; 46: 7208
- 10b Suzuki A, Tabata M, Ueda M. Tetrahedron Lett. 1975; 16: 2195
- 10c Hayashi H, Kaga A, Chiba S. J. Org. Chem. 2017; 82: 11981
- 11a Zhang FL, Wang YF, Lonca GH, Zhu X, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390
- 11b Zhang Z, Kumar RK, Li G, Wu D, Bi X. Org. Lett. 2015; 17: 6190
- 12a Dworakowski KR, Pisarek S, Hassan S, Gryko D. Org. Lett. 2021; 23: 9068
- 12b Xu JT, Xu GQ, Wang ZY, Xu PF. J. Org. Chem. 2019; 84: 14760
- 12c Yin H, Jian S, Feng X, Bao M, Zhang X. Org. Chem. Front. 2024; 11: 3124
- 13a Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 13b Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
- 13c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 14a Liu Y, Xue L, Shi B, Bu F, Wang D, Lu L, Shi R, Lei A. Chem. Commun. 2019; 55: 14922
- 14b Chen X, Luo X, Peng X, Guo J, Zai J, Wang P. Chem. Eur. J. 2020; 26: 3226
- 14c Niu K, Song L, Hao Y, Liu Y, Wang Q. Chem. Commun. 2020; 56: 11673