Ernährung & Medizin 2025; 40(02): 67-71
DOI: 10.1055/a-2600-8385
Wissen

Digitale Zwillinge in der personalisierten Ernährung

Paul Beier
,
Christian Sina
,
Franziska Schmelter

Die personalisierte Ernährung will, basierend auf individuellen Gesundheits- und Lebensstilfaktoren, angepasste Ernährungsempfehlungen ableiten. Jedoch bleibt das komplexe Zusammenspiel der verschiedenen Parameter bislang nur unzureichend verstanden. Ein vielversprechender Lösungsansatz liegt in sog. digitalen Zwillingen als virtuelles Abbild des einzelnen Menschen. Damit lassen sich komplexe Zusammenhänge dynamisch verknüpfen.



Publication History

Article published online:
17 June 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Herforth A, Arimond M, Álvarez-Sánchez C. et al. A global review of food-based dietary guidelines. Adv Nutr 2019; 10: 590-605
  • 2 Healthy diet [Internet]. Zugriff am 15. April 2025 unter https://www.who.int/news-room/fact-sheets/detail/healthy-diet
  • 3 Jinnette R, Narita A, Manning B. et al. Does personalized nutrition advice improve dietary intake in healthy adults? A systematic review of randomized controlled trials. Adv Nutr 2021; 12: 657-669
  • 4 Adams SH, Anthony JC, Carvajal R. et al. Perspective: guiding principles for the implementation of personalized nutrition approaches that benefit health and function. Adv Nutr 2020; 11: 25-34
  • 5 Berry SE, Valdes AM, Drew DA. et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020; 26: 964-973
  • 6 Hengist A, Ong JA, McNeel K. et al. Imprecision nutrition? Intraindividual variability of glucose responses to duplicate presented meals in adults without diabetes. Am J Clin Nutr 2025; 121: 74-82
  • 7 Abrahams M.. Digital twins: The future of personalized nutrition and health?. Lifestyle Genomics 2025; 18: 59-63
  • 8 Gkouskou K, Vlastos I, Karkalousos P. et al. The „virtual digital twins” concept in precision nutrition. Adv Nutr 2020; 11: 1405-1413
  • 9 Katsoulakis E, Wang Q, Wu H. et al. Digital twins for health: a scoping review. NPJ Digit Med 2024; 7: 77
  • 10 Holzapfel C, Waldenberger M, Lorkowski S, Daniel H, Society WG. „Personalized N of the GN“. Genetics and epigenetics in personalized nutrition: evidence, expectations, and experiences. Mol Nutr Food Res 2022; 66: 2200077
  • 11 Mullins VA, Bresette W, Johnstone L. et al. Genomics in personalized nutrition: can you “eat for your genes“?. Nutrients 2020; 12: 3118
  • 12 O’Donovan CB, Walsh MC, Gibney MJ. et al. Knowing your genes: does this impact behaviour change?. Proc Nutr Soc 2017; 76: 182-191
  • 13 Palatini P, Ceolotto G, Ragazzo F. et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens 2009; 27: 1594-1601
  • 14 Celis-Morales C, Livingstone KM, Marsaux CF. et al. Effect of personalized nutrition on health-related behaviour change: evidence from the Food4Me European randomized controlled trial. Int J Epidemiol 2017; 46: 578-588
  • 15 Simon MC, Sina C, Ferrario PG, Daniel H, Society WG. „Personalized N of the GN“. Gut microbiome analysis for personalized nutrition: the state of science. Mol Nutr Food Res 2023; 67: 2200476
  • 16 Zeevi D, Korem T, Zmora N. et al. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163: 1079-1094
  • 17 Rein M, Ben-Yacov O, Godneva A. et al. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Med 2022; 20: 56
  • 18 Ben-Yacov O, Godneva A, Rein M. et al. Personalized postprandial glucose response–targeting diet versus mediterranean diet for glycemic control in prediabetes. Diabetes Care 2021; 44: 1980-1991
  • 19 Kharmats AY, Popp C, Hu L. et al. A randomized clinical trial comparing low-fat with precision nutrition–based diets for weight loss: impact on glycemic variability and HbA1c. Am J Clin Nutr 2023; 118: 443-451
  • 20 Schröder T, Kühn G, Kordowski A. et al. A digital health application allowing a personalized low-glycemic nutrition for the prophylaxis of migraine: proof-of-concept data from a retrospective cohort study. J Clin Med 2022; 11: 1117
  • 21 Kannenberg S, Voggel J, Thieme N. et al. Unlocking potential: Personalized lifestyle therapy for type 2 diabetes through a predictive algorithm-driven digital therapeutic. J Diabetes Sci Technol 2024; [online ahead of print] DOI:
  • 22 Evers S, Grube HC, Gendolla A. et al. Efficacy of digital therapeutic sinCephalea for personalised nutrition versus control for migraine prevention: A 12-week open-label randomised clinical trial Zugriff am 06.05.2025 unter: https://ssrn.com/abstract=5091729 or
  • 23 Huang X, Schmelter F, Seitzer C. et al. From data to insight: Predicting interstitial glucose in healthy cohort with non-invasive sensor technology and machine learning. Res Sq (Preprint) 2023;
  • 24 Namasivayam B.. AI for Healthy Meal Preparation in Smart Cities. EAI Endorsed Trans Smart Cities 2022; 6 (04) e1