RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/a-2596-9863
DOI: 10.1055/a-2596-9863
letter
Stereoselective Synthesis of Monofluoroalkenes via Photoinduced Direct Monofluoroalkenylation of C(sp³)–H Bonds
We are grateful for the support from the University Natural Science Research Excellent Youth Project of Anhui Province (2023AH030095).

Abstract
In this study, a method is introduced for the photoinduced direct monofluoroalkenylation of C(sp³)–H bonds. A diverse range of fluoroacrylic acids react smoothly with various C–H substrates, leading to the formation of important monofluoroalkene motifs. Notably, this approach is cost-effective, exhibits high stereoselectivity, and eliminates the need for metal catalysts.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2596-9863.
- Supporting Information
Publikationsverlauf
Eingereicht: 26. Februar 2025
Angenommen nach Revision: 29. April 2025
Accepted Manuscript online:
29. April 2025
Artikel online veröffentlicht:
16. Juni 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 0025
- 1b Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 1c Kaga A, Chiba S. ACS Catal. 2017; 7: 4697
- 1d Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
- 1e Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
- 1f Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 2a Chen Y, Lu L.-Q, Yu D.-G, Zhu C.-J, Xiao W.-J. Sci. China Chem. 2019; 62: 24
- 2b Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
- 2c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 2d Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 2e Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 3a Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 3b Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
- 4a Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 4b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 4c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 4d O'Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 4e O’Hagan D, Deng H. Chem. Rev. 2015; 115: 634
- 4f Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 4g Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 5a Nguyen TT, Koh MJ, Shen X, Romiti F, Schrock RR, Hoveyda AH. Science 2016; 352: 569
- 5b Van der Veken P, Senten K, Kertèsz I, De Meester I, Lambeir A.-M, Maes M.-B, Scharpé S, Haemers A, Augustyns K. J. Med. Chem. 2005; 48: 1768
- 5c Wong OA, Shi Y. J. Org. Chem. 2009; 74: 8377
- 6a Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
- 6b Oishi S, Kamitani H, Kodera Y, Watanabe K, Kobayashi K, Narumi T, Tomita K, Ohno H, Naito T, Kodama E, Matsuoka M, Fujii N. Org. Biomol. Chem. 2009; 7: 2872
- 7a Drouin M, Hamel J.-D, Paquin J.-F. Synthesis 2018; 50: 881
- 7b Drouin M, Paquin J.-F. Beilstein J. Org. Chem. 2017; 13: 2637
- 7c Koley S, Altman RA. Isr. J. Chem. 2020; 60: 313
- 7d Landelle G, Bergeron M, Turcotte-Savard M.-O, Paquin J.-F. Chem. Soc. Rev. 2011; 40: 2867
- 8a Ahmed E.-AM. A, Suliman AM. Y, Gong T.-J, Fu Y. Org. Lett. 2020; 22: 1414
- 8b Xu J, Ahmed E.-A, Xiao B, Lu Q.-Q, Wang Y.-L, Yu C.-G, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 8231
- 9a Schneider C, Masi D, Couve-Bonnaire S, Pannecoucke X, Hoarau C. Angew. Chem. Int. Ed. 2013; 52: 3246
- 9b Wang C, Liu Y.-C, Xu M.-Y, Xiao B. Org. Lett. 2021; 23: 4593
- 10a Dai W, Shi H, Zhao X, Cao S. Org. Lett. 2016; 18: 4284
- 10b Ma T, Chen Y, Li Y, Ping Y, Kong W. ACS Catal. 2019; 9: 9127
- 10c Zhang Q.-Q, Chen S.-Y, Lin E, Wang H, Li Q. Org. Lett. 2019; 21: 3123
- 11a Du H.-W, Sun J, Gao Q.-S, Wang J.-Y, Wang H, Xu Z, Zhou M.-D. Org. Lett. 2020; 22: 1542
- 11b Kondoh A, Koda K, Terada M. Org. Lett. 2019; 21: 2277
- 12a Li N, Chang J, Kong L, Li X. Org. Chem. Front. 2018; 5: 1978
- 12b Lu X, Wang Y, Zhang B, Pi J.-J, Wang X.-X, Gong T.-J, Xiao B, Fu Y. J. Am. Chem. Soc. 2017; 139: 12632
- 12c Thornbury RT, Toste FD. Angew. Chem. Int. Ed. 2016; 55: 11629
- 12d Yang H, Tian C, Qiu D, Tian H, An G, Li G. Org. Chem. Front. 2019; 6: 2365
- 12e Yang L, Ji W.-W, Lin E, Li J.-L, Fan W.-X, Li Q, Wang H. Org. Lett. 2018; 20: 1924
- 12f Yu L, Tang M.-L, Si C.-M, Meng Z, Liang Y, Han J, Sun X. Org. Lett. 2018; 20: 4579
- 13a Fuchibe K, Mayumi Y, Zhao N, Watanabe S, Yokota M, Ichikawa J. Angew. Chem. Int. Ed. 2013; 52: 7825
- 13b Kong L, Liu B, Zhou X, Wang F, Li X. Chem. Commun. 2017; 53: 10326
- 13c Kong L, Zhou X, Li X. Org. Lett. 2016; 18: 6320
- 13d Tian P, Feng C, Loh T.-P. Nat. Commun. 2015; 6: 7472
- 13e Wu J.-Q, Zhang S.-S, Gao H, Qi Z, Zhou C.-J, Ji W.-W, Liu Y, Chen Y, Li Q, Li X, Wang H. J. Am. Chem. Soc. 2017; 139: 3537
- 13f Zell D, Dhawa U, Müller V, Bursch M, Grimme S, Ackermann L. ACS Catal. 2017; 7: 4209
- 14a Cao C.-L, Zhang G.-X, Xue F, Deng H.-P. Org. Chem. Front. 2022; 9: 959
- 14b Tian H, Xia Q, Wang Q, Dong J, Liu Y, Wang Q. Org. Lett. 2019; 21: 4585
- 14c Xie J, Yu J, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 9416
- 15a Lu X.-Y, Gao A, Liu Q.-L, Xia Z.-J. Tetrahedron 2021; 92: 132259
- 15b Lu X.-Y, Li J.-S, Wang S.-Q, Zhu Y.-J, Li Y.-M, Yan L.-Y, Li J.-M, Wang J.-Y, Zhou H.-P, Ge X.-T. Chem. Commun. 2019; 55: 11123
- 15c Lu X.-Y, Xia Z.-J, Gao A, Liu Q.-L, Jiang R.-C, Liu C.-C. J. Org. Chem. 2021; 86: 8829
- 16a Lu X.-Y, Chen X.-K, Gao M.-T, Sun X.-M, Jiang R.-C, Wang J.-C, Yu L.-J, Ge M.-Y, Wei Z.-H, Liu Z. Org. Chem. Front. 2022; 9: 4712
- 16b Lu X.-Y, Gao A, Ge M.-Y, Xia Z.-J, Liu Q.-L, Tao T.-H, Sun X.-M. J. Org. Chem. 2022; 87: 4654
- 16c Lu X.-Y, Gao M.-T, Yu L.-J, Pan H.-Y, Zhang X, Huang R, Yang K, Shui F.-Y, Song Y.-W, Yang G.-X. Org. Chem. Front. 2023; 10: 1788
- 16d Lu X.-Y, Ge M.-Y, Tao T.-H, Sun X.-M, Gao M.-T, Bao S.-T, Liu Q.-L, Xia Z.-J, Xia J. Org. Chem. Front. 2022; 9: 831
- 16e Lu X.-Y, Huang R, Wang Z.-Z, Zhang X, Jiang F, Yang G.-X, Shui F.-Y, Su M.-X, Sun Y.-X, Sun H.-L. J. Org. Chem. 2024; 89: 6494
- 16f Lu X.-Y, Pan H.-Y, Huang R, Yang K, Zhang X, Wang Z.-Z, Tao Q.-Q, Yang G.-X, Wang X.-J, Zhou H.-P. Org. Lett. 2023; 25: 2476
- 16g Lu X.-Y, Qian Y.-J, Sun H.-L, Su M.-X, Wang Z.-Z, Jiang F, Zhou X.-Y, Sun Y.-X, Shi W.-L, Wan J.-R. Chem. Commun. 2024; 60: 6556
- 16h Lu X.-Y, Song Y.-W, Shui F.-Y, Zhang X, Zhou H.-P, Yang G.-X, Tao Q.-Q, Wang Z.-Z, Yao L.-L, Zhang J.-L. Tetrahedron 2023; 139: 133446
- 16i Lu X, Sun X, Niu Y, Wang J, Yin W, Gao M, Liu Z, Wei Z, Tao T. Chin. J. Org. Chem. 2023; 43: 2110
- 16j Sun H.-L, Su M.-X, Zhang X, Qian Y.-J, Wan J.-R, Si W.-L, Sun Y.-X, Zhou X.-Y, Zhou H.-P, Lu X.-Y. Tetrahedron 2024; 163: 134166
- 17
General Procedure
In air, eosin Y (5 mol%), the corresponding fluoro acrylic acids (0.2 mmol, 1.0 equiv.),
and DABCO (50 mol%) were added to a Schlenk tube containing a stir bar. The vessel
was then evacuated and purged with argon through three cycles. Next, C–H pattern solvents
(0.5 mL), CH3CN (0.5 mL), DMSO (0.5 mL), and TBPB (2.0 equiv) were added sequentially using a syringe.
The resulting reaction mixture was irradiated with 20 W blue LEDs for 10 h under an
argon atmosphere. Finally, the residue was purified by flash chromatography using
a mixture of PE and EtOAc.