Semin Respir Crit Care Med
DOI: 10.1055/a-2591-5462
Review Article

Sleep and Cardiovascular Health

Lucía Pinilla
1   Adelaide Institute for Sleep Health and FHMRI Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia
2   Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
,
Irene Cano-Pumarega
2   Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
3   Sleep Unit, Pneumology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
,
Manuel Sánchez-de-la-Torre
2   Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
4   Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Physiotherapy and Nursing, Group of Precision Medicine in Chronic Diseases, Hospital Nacional de Parapléjicos, IDISCAM, University of Castilla-La Mancha, Toledo, Spain
› Author Affiliations

Abstract

Sleep is recognized as a foundational pillar of health, essential for maintaining nearly all vital processes, and a crucial component of cardiovascular function. In recent years, there has been a paradigm shift to conceptualize sleep health as a combination of multiple domains, including duration, timing, quality, variability/regularity, habits/behaviors, and disordered sleep. This review provides a comprehensive overview of the current evidence linking the multifaceted elements that contribute to healthy sleep with cardiovascular and blood pressure-related outcomes. The reviewed literature indicates a strong relationship between sleep and cardiovascular health. However, the specific pathophysiological mechanisms that bridge the various dimensions of sleep with cardiovascular outcomes remain elusive. Given the global burden of cardiovascular disease, understanding the interplay between sleep and cardiovascular health has important implications for both individual and population health. Sustained efforts to move beyond a focus on discrete domains of sleep are essential to fully understand this complex and potentially bidirectional relationship. Promoting healthy sleep patterns and optimizing the management and treatment of sleep disorders are key steps toward developing more comprehensive strategies for reducing cardiovascular risk. Integrating sleep health into routine clinical care is identified as a critical opportunity to enhance cardiovascular disease prevention and management, particularly among vulnerable and high-risk populations.



Publication History

Article published online:
21 May 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Grandner MA, Fernandez FX. The translational neuroscience of sleep: a contextual framework. Science 2021; 374 (6567) 568-573
  • 2 Zee PC, Turek FW. Sleep and health: everywhere and in both directions. Arch Intern Med 2006; 166 (16) 1686-1688
  • 3 Lim DC, Najafi A, Afifi L. et al; World Sleep Society Global Sleep Health Taskforce. The need to promote sleep health in public health agendas across the globe. Lancet Public Health 2023; 8 (10) e820-e826
  • 4 Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest 2011; 121 (06) 2133-2141
  • 5 Tempesta D, Socci V, De Gennaro L, Ferrara M. Sleep and emotional processing. Sleep Med Rev 2018; 40: 183-195
  • 6 Mason GM, Lokhandwala S, Riggins T, Spencer RMC. Sleep and human cognitive development. Sleep Med Rev 2021; 57: 101472
  • 7 Walker MP. The role of sleep in cognition and emotion. Ann N Y Acad Sci 2009; 1156 (01) 168-197
  • 8 Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci 2019; 22 (10) 1598-1610
  • 9 Lewis LD. The interconnected causes and consequences of sleep in the brain. Science 2021; 374 (6567) 564-568
  • 10 Irwin MR, Opp MR. Sleep health: reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 2017; 42 (01) 129-155
  • 11 Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol 2014; 10 (08) 466-475
  • 12 Liu S, Wang X, Zheng Q, Gao L, Sun Q. Sleep deprivation and central appetite regulation. Nutrients 2022; 14 (24) 5196
  • 13 Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev 2012; 16 (02) 151-166
  • 14 Trinder J, Waloszek J, Woods MJ, Jordan AS. Sleep and cardiovascular regulation. Pflugers Arch 2012; 463 (01) 161-168
  • 15 Portaluppi F, Smolensky MH. Circadian rhythmic and environmental determinants of 24-hour blood pressure regulation and patterning. Sleep Med Rev 2017; 33: 4-16
  • 16 Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian rhythms in cardiovascular metabolism. Circ Res 2024; 134 (06) 635-658
  • 17 Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest 2018; 128 (06) 2157-2167
  • 18 Mancia G. Autonomic modulation of the cardiovascular system during sleep. N Engl J Med 1993; 328 (05) 347-349
  • 19 Hanak V, Somers VK. Cardiovascular and cerebrovascular physiology in sleep. Handb Clin Neurol 2011; 98: 315-325
  • 20 Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med 1993; 328 (05) 303-307
  • 21 Matricciani L, Bin YS, Lallukka T. et al. Rethinking the sleep-health link. Sleep Health 2018; 4 (04) 339-348
  • 22 Korostovtseva L, Bochkarev M, Sviryaev Y. Sleep and cardiovascular risk. Sleep Med Clin 2021; 16 (03) 485-497
  • 23 Lloyd-Jones DM, Allen NB, Anderson CAM. et al; American Heart Association. Life's essential 8: updating and enhancing the American Heart Association's construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation 2022; 146 (05) e18-e43
  • 24 Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol 2022; 80 (25) 2361-2371
  • 25 Roth GA, Mensah GA, Fuster V. The global burden of cardiovascular diseases and risks: a compass for global action. J Am Coll Cardiol 2020; 76 (25) 2980-2981
  • 26 Razo C, Welgan CA, Johnson CO. et al. Effects of elevated systolic blood pressure on ischemic heart disease: a Burden of Proof study. Nat Med 2022; 28 (10) 2056-2065
  • 27 Dolan E, Stanton A, Thijs L. et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension 2005; 46 (01) 156-161
  • 28 Stergiou GS, Palatini P, Parati G. et al; European Society of Hypertension Council and the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J Hypertens 2021; 39 (07) 1293-1302
  • 29 O'Brien E, Sheridan J, O'Malley K. Dippers and non-dippers. Lancet 1988; 2 (8607) 397
  • 30 Staplin N, de la Sierra A, Ruilope LM. et al. Relationship between clinic and ambulatory blood pressure and mortality: an observational cohort study in 59 124 patients. Lancet 2023; 401 (10393): 2041-2050
  • 31 Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension 2011; 57 (01) 3-10
  • 32 Huart J, Persu A, Lengelé JP, Krzesinski JM, Jouret F, Stergiou GS. Pathophysiology of the Nondipping Blood Pressure Pattern. Hypertension 2023; 80 (04) 719-729
  • 33 Arnett DK, Blumenthal RS, Albert MA. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 2019; 140 (11) e596-e646
  • 34 Chauhan S, Norbury R, Faßbender KC, Ettinger U, Kumari V. Beyond sleep: A multidimensional model of chronotype. Neurosci Biobehav Rev 2023; 148: 105114
  • 35 Hirshkowitz M, Whiton K, Albert SM. et al. National Sleep Foundation's sleep time duration recommendations: methodology and results summary. Sleep Health 2015; 1 (01) 40-43
  • 36 Watson NF, Badr MS, Belenky G. et al; Consensus Conference Panel, Non-Participating Observers, American Academy of Sleep Medicine Staff. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. J Clin Sleep Med 2015; 11 (06) 591-592
  • 37 Watson NF, Badr MS, Belenky G. et al; Consensus Conference Panel. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. J Clin Sleep Med 2015; 11 (08) 931-952
  • 38 Krittanawong C, Tunhasiriwet A, Wang Z. et al. Association between short and long sleep durations and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care 2019; 8 (08) 762-770
  • 39 Yadav D, Hyun DS, Ahn SV, Koh SB, Kim JY. A prospective study of the association between total sleep duration and incident hypertension. J Clin Hypertens (Greenwich) 2017; 19 (05) 550-557
  • 40 Gallicchio L, Kalesan B. Sleep duration and mortality: a systematic review and meta-analysis. J Sleep Res 2009; 18 (02) 148-158
  • 41 Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 2010; 33 (05) 585-592
  • 42 Guo X, Zheng L, Wang J. et al. Epidemiological evidence for the link between sleep duration and high blood pressure: a systematic review and meta-analysis. Sleep Med 2013; 14 (04) 324-332
  • 43 Wang Y, Mei H, Jiang YR. et al. Relationship between duration of sleep and hypertension in adults: a meta-analysis. J Clin Sleep Med 2015; 11 (09) 1047-1056
  • 44 Cappuccio FP, Cooper D, D'Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J 2011; 32 (12) 1484-1492
  • 45 Leng Y, Cappuccio FP, Wainwright NW. et al. Sleep duration and risk of fatal and nonfatal stroke: a prospective study and meta-analysis. Neurology 2015; 84 (11) 1072-1079
  • 46 Itani O, Jike M, Watanabe N, Kaneita Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med 2017; 32: 246-256
  • 47 Killick R, Stranks L, Hoyos CM. Sleep deficiency and cardiometabolic disease. Clin Chest Med 2022; 43 (02) 319-336
  • 48 Jin Q, Yang N, Dai J. et al. Association of sleep duration with all-cause and cardiovascular mortality: a prospective cohort study. Front Public Health 2022; 10: 880276
  • 49 Kwok CS, Kontopantelis E, Kuligowski G. et al. Self-reported sleep duration and quality and cardiovascular disease and mortality: a dose-response meta-analysis. J Am Heart Assoc 2018; 7 (15) e008552
  • 50 Sekula P, Del Greco M F, Pattaro C, Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol 2016; 27 (11) 3253-3265
  • 51 Sofer T, Goodman MO, Bertisch SM, Redline S. Longer sleep improves cardiovascular outcomes: time to make sleep a priority. Eur Heart J 2021; 42 (34) 3358-3360
  • 52 Daghlas I, Dashti HS, Lane J. et al. Sleep duration and myocardial infarction. J Am Coll Cardiol 2019; 74 (10) 1304-1314
  • 53 Açar G, Akçakoyun M, Sari I. et al. Acute sleep deprivation in healthy adults is associated with a reduction in left atrial early diastolic strain rate. Sleep Breath 2013; 17 (03) 975-983
  • 54 Cakici M, Dogan A, Cetin M. et al. Negative effects of acute sleep deprivation on left ventricular functions and cardiac repolarization in healthy young adults. Pacing Clin Electrophysiol 2015; 38 (06) 713-722
  • 55 Ozer O, Ozbala B, Sari I. et al. Acute sleep deprivation is associated with increased QT dispersion in healthy young adults. Pacing Clin Electrophysiol 2008; 31 (08) 979-984
  • 56 McAlpine CS, Kiss MG, Rattik S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019; 566 (7744) 383-387
  • 57 Tobaldini E, Pecis M, Montano N. Effects of acute and chronic sleep deprivation on cardiovascular regulation. Arch Ital Biol 2014; 152 (2–3): 103-110
  • 58 Girschik J, Fritschi L, Heyworth J, Waters F. Validation of self-reported sleep against actigraphy. J Epidemiol 2012; 22 (05) 462-468
  • 59 Domínguez F, Fuster V, Fernández-Alvira JM. et al. Association of sleep duration and quality with subclinical atherosclerosis. J Am Coll Cardiol 2019; 73 (02) 134-144
  • 60 Dejenie TA, Admasu FT. et al. Impact of objectively-measured sleep duration on cardiometabolic health: a systematic review of recent evidence. Front Endocrinol (Lausanne) 2022; 13: 1064969
  • 61 Makarem N, Shechter A, Carnethon MR, Mullington JM, Hall MH, Abdalla M. Sleep duration and blood pressure: recent advances and future directions. Curr Hypertens Rep 2019; 21 (05) 33
  • 62 Chandola T, Ferrie JE, Perski A, Akbaraly T, Marmot MG. The effect of short sleep duration on coronary heart disease risk is greatest among those with sleep disturbance: a prospective study from the Whitehall II cohort. Sleep 2010; 33 (06) 739-744
  • 63 Chang X, Chen X, Ji JS. et al. Association between sleep duration and hypertension in southwest China: a population-based cross-sectional study. BMJ Open 2022; 12 (06) e052193
  • 64 Bertisch SM, Pollock BD, Mittleman MA. et al. Insomnia with objective short sleep duration and risk of incident cardiovascular disease and all-cause mortality: sleep heart health study. Sleep 2018; 41 (06) zsy047
  • 65 Lin Y, Wu Y, Lin Q. et al. Objective sleep duration and all-cause mortality among people with obstructive sleep apnea. JAMA Netw Open 2023; 6 (12) e2346085
  • 66 Tobaldini E, Fiorelli EM, Solbiati M, Costantino G, Nobili L, Montano N. Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat Rev Cardiol 2019; 16 (04) 213-224
  • 67 Bock JM, Vungarala S, Covassin N, Somers VK. Sleep duration and hypertension: epidemiological evidence and underlying mechanisms. Am J Hypertens 2022; 35 (01) 3-11
  • 68 Chattu VK, Manzar MD, Kumary S, Burman D, Spence DW, Pandi-Perumal SR. The global problem of insufficient sleep and its serious public health implications. Healthcare (Basel) 2018; 7 (01) 1
  • 69 Chattu VK, Sakhamuri SM, Kumar R, Spence DW, BaHammam AS, Pandi-Perumal SR. Insufficient sleep syndrome: is it time to classify it as a major noncommunicable disease?. Sleep Sci 2018; 11 (02) 56-64
  • 70 Scott H, Naik G, Lechat B. et al. Are we getting enough sleep? Frequent irregular sleep found in an analysis of over 11 million nights of objective in-home sleep data. Sleep Health 2024; 10 (01) 91-97
  • 71 Aneni EC, Osondu CU, Joseph J. et al. Habitual sleep duration and its relationship with cardiovascular health, healthcare costs, and resource utilization in a working population. Sleep Health 2023; 9 (01) 77-85
  • 72 Yan B, Li R, Li J. et al. Sleep timing may predict congestive heart failure: a community-based cohort study. J Am Heart Assoc 2021; 10 (06) e018385
  • 73 Ma M, Fan Y, Peng Y. et al. Association of sleep timing with all-cause and cardiovascular mortality: the sleep heart health study and the osteoporotic fractures in men study. J Clin Sleep Med 2024; 20 (04) 545-553
  • 74 Nikbakhtian S, Reed AB, Obika BD. et al. Accelerometer-derived sleep onset timing and cardiovascular disease incidence: a UK Biobank cohort study. Eur Heart J Digit Health 2021; 2 (04) 658-666
  • 75 Abbott SM, Weng J, Reid KJ. et al. Sleep timing, stability, and BP in the sueño ancillary study of the Hispanic Community Health Study/Study of Latinos. Chest 2019; 155 (01) 60-68
  • 76 Kim Y, An HJ, Seo YG. Optimal cutoffs of sleep timing and sleep duration for cardiovascular risk factors. Diabetes Res Clin Pract 2023; 204: 110894
  • 77 Wickham SR, Amarasekara NA, Bartonicek A, Conner TS. The big three health behaviors and mental health and well-being among young adults: a cross-sectional investigation of sleep, exercise, and diet. Front Psychol 2020; 11: 579205
  • 78 Zhu CY, Hu HL, Tang GM. et al. Sleep quality, sleep duration, and the risk of adverse clinical outcomes in patients with myocardial infarction with non-obstructive coronary arteries. Front Cardiovasc Med 2022; 9: 834169
  • 79 Lao XQ, Liu X, Deng HB. et al. Sleep quality, sleep duration, and the risk of coronary heart disease: a prospective cohort study with 60,586 adults. J Clin Sleep Med 2018; 14 (01) 109-117
  • 80 Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, van den Berg JF, Verschuren WM. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. Sleep 2011; 34 (11) 1487-1492
  • 81 Lo K, Woo B, Wong M, Tam W. Subjective sleep quality, blood pressure, and hypertension: a meta-analysis. J Clin Hypertens (Greenwich) 2018; 20 (03) 592-605
  • 82 Hill LK, Wu JQ, Hinderliter AL, Blumenthal JA, Sherwood A. Actigraphy-derived sleep efficiency is associated with endothelial function in men and women with untreated hypertension. Am J Hypertens 2021; 34 (02) 207-211
  • 83 Yan B, Yang J, Zhao B, Fan Y, Wang W, Ma X. Objective sleep efficiency predicts cardiovascular disease in a community population: the sleep heart health study. J Am Heart Assoc 2021; 10 (07) e016201
  • 84 Sletten TL, Cappuccio FP, Davidson AJ, Van Cauter E, Rajaratnam SMW, Scheer FAJL. Health consequences of circadian disruption. Sleep 2020; 43 (01) zsz194
  • 85 Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep Med Rev 2015; 22: 23-36
  • 86 Fischer D, Klerman EB, Phillips AJK. Measuring sleep regularity: theoretical properties and practical usage of existing metrics. Sleep 2021; 44 (10) zsab103
  • 87 Zhu B, Wang Y, Yuan J. et al. Associations between sleep variability and cardiometabolic health: a systematic review. Sleep Med Rev 2022; 66: 101688
  • 88 Qin S, Chee MWL. The emerging importance of sleep regularity on cardiovascular health and cognitive impairment in older adults: a review of the literature. Nat Sci Sleep 2024; 16: 585-597
  • 89 Huang T, Mariani S, Redline S. Sleep irregularity and risk of cardiovascular events: the multi-ethnic study of atherosclerosis. J Am Coll Cardiol 2020; 75 (09) 991-999
  • 90 Full KM, Huang T, Shah NA. et al. Sleep irregularity and subclinical markers of cardiovascular disease: the multi-ethnic study of atherosclerosis. J Am Heart Assoc 2023; 12 (04) e027361
  • 91 Katamreddy A, Uppal D, Ramani G. et al. Day-to-day variation in sleep duration is associated with increased all-cause mortality. J Clin Sleep Med 2022; 18 (03) 921-926
  • 92 Parise BK, Santos RB, Mesas AE. et al. Sleep irregularity and the association with hypertension and blood pressure levels: the ELSA-Brasil study. J Hypertens 2023; 41 (04) 670-677
  • 93 Häusler N, Marques-Vidal P, Haba-Rubio J, Heinzer R. Association between actigraphy-based sleep duration variability and cardiovascular risk factors - results of a population-based study. Sleep Med 2020; 66: 286-290
  • 94 Xu Y, Barnes VA, Harris RA. et al. Sleep variability, sleep irregularity, and nighttime blood pressure dipping. Hypertension 2023; 80 (12) 2621-2626
  • 95 Scott H, Lechat B, Guyett A. et al. Sleep irregularity is associated with hypertension: findings from over 2 million nights with a large global population sample. Hypertension 2023; 80 (05) 1117-1126
  • 96 Zheng NS, Annis J, Master H. et al. Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program. Nat Med 2024; 30 (09) 2648-2656
  • 97 Phillips AJK, Clerx WM, O'Brien CS. et al. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep 2017; 7 (01) 3216
  • 98 Lunsford-Avery JR, Engelhard MM, Navar AM, Kollins SH. Validation of the sleep regularity index in older adults and associations with cardiometabolic risk. Sci Rep 2018; 8 (01) 14158
  • 99 Windred DP, Burns AC, Lane JM. et al. Sleep regularity is a stronger predictor of mortality risk than sleep duration: a prospective cohort study. Sleep 2024; 47 (01) zsad253
  • 100 Roenneberg T, Merrow M. The Circadian clock and human health. Curr Biol 2016; 26 (10) R432-R443
  • 101 Faraut B, Andrillon T, Vecchierini MF, Leger D. Napping: a public health issue. From epidemiological to laboratory studies. Sleep Med Rev 2017; 35: 85-100
  • 102 Linz D, Kadhim K, Kalman JM, McEvoy RD, Sanders P. Sleep and cardiovascular risk: how much is too much of a good thing?. Eur Heart J 2019; 40 (20) 1630-1632
  • 103 Chen A, Lennon L, Papacosta O, Wannamethee SG. Association of night-time sleep duration and daytime napping with all-cause and cause-specific mortality in older British men: Findings from the British Regional Heart Study. Sleep Med 2023; 109: 32-39
  • 104 Wang Z, Yang W, Li X, Qi X, Pan KY, Xu W. Association of sleep duration, napping, and sleep patterns with risk of cardiovascular diseases: a nationwide twin study. J Am Heart Assoc 2022; 11 (15) e025969
  • 105 Yamada T, Hara K, Shojima N, Yamauchi T, Kadowaki T. Daytime napping and the risk of cardiovascular disease and all-cause mortality: a prospective study and dose-response meta-analysis. Sleep 2015; 38 (12) 1945-1953
  • 106 Sun J, Ma C, Zhao M, Magnussen CG, Xi B. Daytime napping and cardiovascular risk factors, cardiovascular disease, and mortality: a systematic review. Sleep Med Rev 2022; 65: 101682
  • 107 Häusler N, Haba-Rubio J, Heinzer R, Marques-Vidal P. Association of napping with incident cardiovascular events in a prospective cohort study. Heart 2019; 105 (23) 1793-1798
  • 108 Cheungpasitporn W, Thongprayoon C, Srivali N. et al. The effects of napping on the risk of hypertension: a systematic review and meta-analysis. J Evid Based Med 2016; 9 (04) 205-212
  • 109 Lin L, Huang J, Liu Z, Chen P, Huang C. Associations of siesta and total sleep duration with hypertension or cardiovascular diseases in middle-aged and older adults. Clin Cardiol 2023; 46 (02) 159-170
  • 110 Yang MJ, Zhang Z, Wang YJ. et al. Association of nap frequency with hypertension or ischemic stroke supported by prospective cohort data and Mendelian randomization in predominantly middle-aged European subjects. Hypertension 2022; 79 (09) 1962-1970
  • 111 Dashti HS, Daghlas I, Lane JM. et al; 23andMe Research Team. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat Commun 2021; 12 (01) 900
  • 112 Chen J, Chen J, Zhu T. et al. Causal relationships of excessive daytime napping with atherosclerosis and cardiovascular diseases: a Mendelian randomization study. Sleep 2023; 46 (01) zsac257
  • 113 Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol 2012; 22 (10) 939-943
  • 114 Koopman ADM, Rauh SP, van 't Riet E. et al. The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: the New Hoorn study. J Biol Rhythms 2017; 32 (04) 359-368
  • 115 Rutters F, Lemmens SG, Adam TC. et al. Is social jetlag associated with an adverse endocrine, behavioral, and cardiovascular risk profile?. J Biol Rhythms 2014; 29 (05) 377-383
  • 116 Sűdy AR, Ella K, Bódizs R, Káldi K. Association of social jetlag with sleep quality and autonomic cardiac control during sleep in young healthy men. Front Neurosci 2019; 13: 950
  • 117 Pompeia S, Panjeh S, Louzada FM, D'Almeida V, Hipolide DC, Cogo-Moreira H. Social jetlag is associated with adverse cardiometabolic latent traits in early adolescence: an observational study. Front Endocrinol (Lausanne) 2023; 14: 1085302
  • 118 Nakamura N, Akiyama H, Nishimura M. et al. Acute social jetlag augments morning blood pressure surge: a randomized crossover trial. Hypertens Res 2023; 46 (09) 2179-2191
  • 119 Willoughby AR, Alikhani I, Karsikas M, Chua XY, Chee MWL. Country differences in nocturnal sleep variability: Observations from a large-scale, long-term sleep wearable study. Sleep Med 2023; 110: 155-165
  • 120 Hu L, Zhang B, Zhou W. et al. Sleep duration on workdays or nonworkdays and cardiac-cerebral vascular diseases in Southern China. Sleep Med 2018; 47: 36-43
  • 121 Zhu H, Qin S, Wu M. Association between weekend catch-up sleep and cardiovascular disease: evidence from the National Health and Nutrition Examination Surveys 2017-2018. Sleep Health 2024; 10 (01) 98-103
  • 122 Chaput JP, Biswas RK, Ahmadi M. et al. Device-measured weekend catch-up sleep, mortality, and cardiovascular disease incidence in adults. Sleep 2024; 47 (11) zsae135
  • 123 Larson O, Gehrman PR. Keeping the balance: the benefits of catch-up sleep versus the risks of sleep irregularity. Sleep 2024; 47 (09) zsae046
  • 124 Lieberman HR, Agarwal S, Caldwell JA, Fulgoni VL. Demographics, sleep, and daily patterns of caffeine intake of shift workers in a nationally representative sample of the US adult population. Sleep 2020; 43 (03) zsz240
  • 125 Manohar S, Thongprayoon C, Cheungpasitporn W, Mao MA, Herrmann SM. Associations of rotational shift work and night shift status with hypertension: a systematic review and meta-analysis. J Hypertens 2017; 35 (10) 1929-1937
  • 126 Makarem N, Alcántara C, Williams N, Bello NA, Abdalla M. Effect of sleep disturbances on blood pressure. Hypertension 2021; 77 (04) 1036-1046
  • 127 Patterson PD, Mountz KA, Budd CT. et al. Impact of shift work on blood pressure among emergency medical services clinicians and related shift workers: a systematic review and meta-analysis. Sleep Health 2020; 6 (03) 387-398
  • 128 Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 2016; 113 (10) E1402-E1411
  • 129 Hublin C, Partinen M, Koskenvuo K, Silventoinen K, Koskenvuo M, Kaprio J. Shift-work and cardiovascular disease: a population-based 22-year follow-up study. Eur J Epidemiol 2010; 25 (05) 315-323
  • 130 Frost P, Kolstad HA, Bonde JP. Shift work and the risk of ischemic heart disease - a systematic review of the epidemiologic evidence. Scand J Work Environ Health 2009; 35 (03) 163-179
  • 131 Vyas MV, Garg AX, Iansavichus AV. et al. Shift work and vascular events: systematic review and meta-analysis. BMJ 2012; 345: e4800
  • 132 Wang D, Ruan W, Chen Z, Peng Y, Li W. Shift work and risk of cardiovascular disease morbidity and mortality: a dose-response meta-analysis of cohort studies. Eur J Prev Cardiol 2018; 25 (12) 1293-1302
  • 133 Gohari A, Wiebe D, Ayas N. Shift working and cardiovascular health. Chronobiol Int 2023; 40 (01) 27-32
  • 134 Wong R, Crane A, Sheth J, Mayrovitz HN. Shift work as a cardiovascular disease risk factor: a narrative review. Cureus 2023; 15 (06) e41186
  • 135 Ho FK, Celis-Morales C, Gray SR. et al. Association and pathways between shift work and cardiovascular disease: a prospective cohort study of 238 661 participants from UK Biobank. Int J Epidemiol 2022; 51 (02) 579-590
  • 136 Kalmbach DA, Schneider LD, Cheung J. et al. Genetic basis of chronotype in humans: insights from three landmark GWAS. Sleep 2017; 40 (02) zsw048
  • 137 Merikanto I, Lahti T, Puolijoki H. et al. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int 2013; 30 (04) 470-477
  • 138 Wong PM, Hasler BP, Kamarck TW, Muldoon MF, Manuck SB. Social jetlag, chronotype, and cardiometabolic risk. J Clin Endocrinol Metab 2015; 100 (12) 4612-4620
  • 139 Makarem N, Paul J, Giardina EV, Liao M, Aggarwal B. Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol Int 2020; 37 (05) 673-685
  • 140 Jiang J, Chen G, Song X. et al. Effects of chronotype on sleep, mood and cardiovascular circadian rhythms in rotating night shift medical workers. Int Arch Occup Environ Health 2024; 97 (04) 461-471
  • 141 Knutson KL, von Schantz M. Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol Int 2018; 35 (08) 1045-1053
  • 142 Khanji MY, Karim S, Cooper J. et al. Impact of sleep duration and chronotype on cardiac structure and function: the UK Biobank study. Curr Probl Cardiol 2023; 48 (07) 101688
  • 143 Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest 2014; 146 (05) 1387-1394
  • 144 Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation 2012; 126 (12) 1495-1510
  • 145 Parish JM, Shepard Jr JW. Cardiovascular effects of sleep disorders. Chest 1990; 97 (05) 1220-1226
  • 146 Quan SF, Gersh BJ. National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute. Cardiovascular consequences of sleep-disordered breathing: past, present and future: report of a workshop from the National Center on Sleep Disorders Research and the National Heart, Lung, and Blood Institute. Circulation 2004; 109 (08) 951-957
  • 147 Gottesman RF, Lutsey PL, Benveniste H. et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; and Council on Hypertension. Impact of sleep disorders and disturbed sleep on brain health: a scientific statement from the American Heart Association. Stroke 2024; 55 (03) e61-e76
  • 148 Wang Q, Wang X, Yang C, Wang L. The role of sleep disorders in cardiovascular diseases: culprit or accomplice?. Life Sci 2021; 283: 119851
  • 149 Dey S, Sun E, Frishman WH, Aronow WS. Sleep disorders and coronary artery disease. Cardiol Rev 2023; 31 (04) 219-224
  • 150 DiCaro MV, Lei K, Yee B, Tak T. The effects of obstructive sleep apnea on the cardiovascular system: a comprehensive review. J Clin Med 2024; 13 (11) 3223
  • 151 Khokhrina A, Andreeva E, Degryse JM. A systematic review on the association of sleep-disordered breathing with cardiovascular pathology in adults. NPJ Prim Care Respir Med 2022; 32 (01) 41
  • 152 Javaheri S, Javaheri S, Somers VK. et al. Interactions of obstructive sleep apnea with the pathophysiology of cardiovascular disease, part 1: JACC state-of-the-art review. J Am Coll Cardiol 2024; 84 (13) 1208-1223
  • 153 Javaheri S, Javaheri S, Gozal D. et al. Treatment of OSA and its impact on cardiovascular disease, part 2: JACC state-of-the-art review. J Am Coll Cardiol 2024; 84 (13) 1224-1240
  • 154 Perlis ML, Posner D, Riemann D, Bastien CH, Teel J, Thase M. Insomnia. Lancet 2022; 400 (10357): 1047-1060
  • 155 Bhatt P, Patel V, Motwani J. et al. Insomnia and cardiovascular health: exploring the link between sleep disorders and cardiac arrhythmias. Curr Cardiol Rep 2023; 25 (10) 1211-1221
  • 156 Sofi F, Cesari F, Casini A, Macchi C, Abbate R, Gensini GF. Insomnia and risk of cardiovascular disease: a meta-analysis. Eur J Prev Cardiol 2014; 21 (01) 57-64
  • 157 Javaheri S, Redline S. Insomnia and risk of cardiovascular disease. Chest 2017; 152 (02) 435-444
  • 158 Perlis ML, Pigeon WR, Grandner MA. et al. Why treat insomnia?. J Prim Care Community Health 2021;12:21501327211014084
  • 159 Benjafield AV, Ayas NT, Eastwood PR. et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 2019; 7 (08) 687-698
  • 160 Kohler M, Stradling JR. Mechanisms of vascular damage in obstructive sleep apnea. Nat Rev Cardiol 2010; 7 (12) 677-685
  • 161 Durán-Cantolla J, Aizpuru F, Martínez-Null C, Barbé-Illa F. Obstructive sleep apnea/hypopnea and systemic hypertension. Sleep Med Rev 2009; 13 (05) 323-331
  • 162 Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ 2000; 320 (7233) 479-482
  • 163 Nieto FJ, Young TB, Lind BK. et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep heart health study. JAMA 2000; 283 (14) 1829-1836
  • 164 Lechat B, Loffler KA, Reynolds AC. et al. High night-to-night variability in sleep apnea severity is associated with uncontrolled hypertension. NPJ Digit Med 2023; 6 (01) 57
  • 165 Grassi G, Quarti-Trevano F, Mancia G. Obstructive sleep apnea, CPAP and arterial hypertension: a cardiologist's view point. Arch Bronconeumol 2022; 58 (06) 461-462
  • 166 Sharma S, Stansbury R, Hackett B, Fox H. Sleep apnea and pulmonary hypertension: a riddle waiting to be solved. Pharmacol Ther 2021; 227: 107935
  • 167 Baguet JP, Lévy P, Barone-Rochette G. et al. Masked hypertension in obstructive sleep apnea syndrome. J Hypertens 2008; 26 (05) 885-892
  • 168 Martínez-García MA, Navarro-Soriano C, Torres G. et al; on behalf the Spanish Sleep Network. Beyond resistant hypertension. Hypertension 2018; 72 (03) 618-624
  • 169 Kario K, Hettrick DA, Prejbisz A, Januszewicz A. Obstructive sleep apnea-induced neurogenic nocturnal hypertension: a potential role of renal denervation?. Hypertension 2021; 77 (04) 1047-1060
  • 170 Cuspidi C, Tadic M, Sala C, Gherbesi E, Grassi G, Mancia G. Blood pressure non-dipping and obstructive sleep apnea syndrome: a meta-analysis. J Clin Med 2019; 8 (09) 1367
  • 171 Pepperell JC, Ramdassingh-Dow S, Crosthwaite N. et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet 2002; 359 (9302) 204-210
  • 172 Haentjens P, Van Meerhaeghe A, Moscariello A. et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch Intern Med 2007; 167 (08) 757-764
  • 173 Shah NA, Yaggi HK, Concato J, Mohsenin V. Obstructive sleep apnea as a risk factor for coronary events or cardiovascular death. Sleep Breath 2010; 14 (02) 131-136
  • 174 Holt A, Bjerre J, Zareini B. et al. Sleep apnea, the risk of developing heart failure, and potential benefits of continuous positive airway pressure (CPAP) therapy. J Am Heart Assoc 2018; 7 (13) e008684
  • 175 Mehra R, Benjamin EJ, Shahar E. et al; Sleep Heart Health Study. Association of nocturnal arrhythmias with sleep-disordered breathing: the sleep heart health study. Am J Respir Crit Care Med 2006; 173 (08) 910-916
  • 176 Gami AS, Pressman G, Caples SM. et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004; 110 (04) 364-367
  • 177 Loke YK, Brown JW, Kwok CS, Niruban A, Myint PK. Association of obstructive sleep apnea with risk of serious cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2012; 5 (05) 720-728
  • 178 Bassetti C, Aldrich MS. Sleep apnea in acute cerebrovascular diseases: final report on 128 patients. Sleep 1999; 22 (02) 217-223
  • 179 Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 2005; 365 (9464) 1046-1053
  • 180 Sapiña-Beltrán E, Gracia-Lavedan E, Torres G. et al; ILERVAS group. Prevalence of obstructive sleep apnoea and its association with atherosclerotic plaques in a cohort of subjects with mild-moderate cardiovascular risk. Arch Bronconeumol 2022; 58 (06) 490-497
  • 181 McEvoy RD, Antic NA, Heeley E. et al; SAVE Investigators and Coordinators. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med 2016; 375 (10) 919-931
  • 182 Sánchez-de-la-Torre M, Sánchez-de-la-Torre A, Bertran S. et al; Spanish Sleep Network. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): a randomised controlled trial. Lancet Respir Med 2020; 8 (04) 359-367
  • 183 Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. the RICCADSA randomized controlled trial. Am J Respir Crit Care Med 2016; 194 (05) 613-620
  • 184 Sánchez-de-la-Torre M, Gracia-Lavedan E, Benitez ID. et al. Adherence to CPAP treatment and the risk of recurrent cardiovascular events: a meta-analysis. JAMA 2023; 330 (13) 1255-1265
  • 185 Azarbarzin A, Zinchuk A, Wellman A. et al. Cardiovascular benefit of continuous positive airway pressure in adults with coronary artery disease and obstructive sleep apnea without excessive sleepiness. Am J Respir Crit Care Med 2022; 206 (06) 767-774
  • 186 Pinilla L, Esmaeili N, Labarca G. et al. Hypoxic burden to guide CPAP treatment allocation in patients with obstructive sleep apnoea: a post hoc study of the ISAACC trial. Eur Respir J 2023; 62 (06) 2300828
  • 187 Bradley TD, Floras JS. Sleep apnea and heart failure: Part II: central sleep apnea. Circulation 2003; 107 (13) 1822-1826
  • 188 Cowie MR, Linz D, Redline S, Somers VK, Simonds AK. Sleep disordered breathing and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 2021; 78 (06) 608-624
  • 189 Bradley TD, Logan AG, Lorenzi Filho G. et al; ADVENT-HF Investigators. Adaptive servo-ventilation for sleep-disordered breathing in patients with heart failure with reduced ejection fraction (ADVENT-HF): a multicentre, multinational, parallel-group, open-label, phase 3 randomised controlled trial. Lancet Respir Med 2024; 12 (02) 153-166
  • 190 Cowie MR, Woehrle H, Wegscheider K. et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 2015; 373 (12) 1095-1105
  • 191 Zheng Y, Phillips CL, Sivam S. et al. Cardiovascular disease in obesity hypoventilation syndrome - a review of potential mechanisms and effects of therapy. Sleep Med Rev 2021; 60: 101530
  • 192 Masa JF, Pépin JL, Borel JC, Mokhlesi B, Murphy PB, Sánchez-Quiroga MA. Obesity hypoventilation syndrome. Eur Respir Rev 2019; 28 (151) 180097
  • 193 Czeisler CA, Kronauer RE, Allan JS. et al. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 1989; 244 (4910) 1328-1333
  • 194 Scheer FA, Czeisler CA. Melatonin, sleep, and circadian rhythms. Sleep Med Rev 2005; 9 (01) 5-9
  • 195 Yamauchi M, Jacono FJ, Fujita Y. et al. Effects of environment light during sleep on autonomic functions of heart rate and breathing. Sleep Breath 2014; 18 (04) 829-835
  • 196 Mason IC, Grimaldi D, Reid KJ. et al. Light exposure during sleep impairs cardiometabolic function. Proc Natl Acad Sci U S A 2022; 119 (12) e2113290119
  • 197 Kim M, Vu TH, Maas MB. et al. Light at night in older age is associated with obesity, diabetes, and hypertension. Sleep 2023; 46 (03) zsac130
  • 198 Wallace DA, Qiu X, Schwartz J. et al. Light exposure during sleep is bidirectionally associated with irregular sleep timing: the multi-ethnic study of atherosclerosis (MESA). Environ Pollut 2024; 344: 123258
  • 199 Münzel T, Sørensen M, Daiber A. Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol 2021; 18 (09) 619-636
  • 200 Liu J, Ghastine L, Um P, Rovit E, Wu T. Environmental exposures and sleep outcomes: A review of evidence, potential mechanisms, and implications. Environ Res 2021; 196: 110406
  • 201 Chan CH, Wong BM, Tang JL, Ng DK. Gender difference in snoring and how it changes with age: systematic review and meta-regression. Sleep Breath 2012; 16 (04) 977-986
  • 202 Koskenvuo M, Kaprio J, Partinen M, Langinvainio H, Sarna S, Heikkilä K. Snoring as a risk factor for hypertension and angina pectoris. Lancet 1985; 1 (8434) 893-896
  • 203 Koskenvuo M, Kaprio J, Telakivi T, Partinen M, Heikkilä K, Sarna S. Snoring as a risk factor for ischaemic heart disease and stroke in men. Br Med J (Clin Res Ed) 1987; 294 (6563) 16-19
  • 204 Partinen M, Palomäki H. Snoring and cerebral infarction. Lancet 1985; 2 (8468) 1325-1326
  • 205 Palomäki H. Snoring and the risk of ischemic brain infarction. Stroke 1991; 22 (08) 1021-1025
  • 206 Hu FB, Willett WC, Manson JE. et al. Snoring and risk of cardiovascular disease in women. J Am Coll Cardiol 2000; 35 (02) 308-313
  • 207 Li D, Liu D, Wang X, He D. Self-reported habitual snoring and risk of cardiovascular disease and all-cause mortality. Atherosclerosis 2014; 235 (01) 189-195
  • 208 Marshall NS, Wong KK, Cullen SR, Knuiman MW, Grunstein RR. Snoring is not associated with all-cause mortality, incident cardiovascular disease, or stroke in the Busselton Health Study. Sleep 2012; 35 (09) 1235-1240
  • 209 Wang J, Campos AI, Rentería ME, Xu L. Causal associations of sleep apnea, snoring with cardiovascular diseases, and the role of body mass index: a two-sample Mendelian randomization study. Eur J Prev Cardiol 2023; 30 (07) 552-560
  • 210 Khazaie H, Negahban S, Ghadami MR, Sadeghi Bahmani D, Holsboer-Trachsler E, Brand S. Among middle-aged adults, snoring predicted hypertension independently of sleep apnoea. J Int Med Res 2018; 46 (03) 1187-1196
  • 211 Furukawa T, Nakano H, Hirayama K. et al. Relationship between snoring sound intensity and daytime blood pressure. Sleep Biol Rhythms 2010; 8 (04) 245-253
  • 212 Lechat B, Naik G, Appleton S. et al. Regular snoring is associated with uncontrolled hypertension. NPJ Digit Med 2024; 7 (01) 38
  • 213 Harrison Y. The impact of daylight saving time on sleep and related behaviours. Sleep Med Rev 2013; 17 (04) 285-292
  • 214 Lévy L, Robine JM, Rey G. et al. Daylight saving time affects European mortality patterns. Nat Commun 2022; 13 (01) 6906
  • 215 Berk M, Dodd S, Hallam K, Berk L, Gleeson J, Henry M. Small shifts in diurnal rhythms are associated with an increase in suicide: the effect of daylight saving. Sleep Biol Rhythms 2008; 6 (01) 22-25
  • 216 Coren S. Daylight savings time and traffic accidents. N Engl J Med 1996; 334 (14) 924
  • 217 Janszky I, Ljung R. Shifts to and from daylight saving time and incidence of myocardial infarction. N Engl J Med 2008; 359 (18) 1966-1968
  • 218 Janszky I, Ahnve S, Ljung R. et al. Daylight saving time shifts and incidence of acute myocardial infarction–Swedish Register of Information and Knowledge About Swedish Heart Intensive Care Admissions (RIKS-HIA). Sleep Med 2012; 13 (03) 237-242
  • 219 Sipilä JO, Ruuskanen JO, Rautava P, Kytö V. Changes in ischemic stroke occurrence following daylight saving time transitions. Sleep Med 2016; 27-28: 20-24
  • 220 Foerch C, Korf HW, Steinmetz H, Sitzer M, Arbeitsgruppe Schlaganfall H. Arbeitsgruppe Schlaganfall Hessen. Abrupt shift of the pattern of diurnal variation in stroke onset with daylight saving time transitions. Circulation 2008; 118 (03) 284-290
  • 221 Chudow JJ, Dreyfus I, Zaremski L. et al. Changes in atrial fibrillation admissions following daylight saving time transitions. Sleep Med 2020; 69: 155-158
  • 222 Brindle RC, Yu L, Buysse DJ, Hall MH. Empirical derivation of cutoff values for the sleep health metric and its relationship to cardiometabolic morbidity: results from the Midlife in the United States (MIDUS) study. Sleep 2019; 42 (09) zsz116
  • 223 Fan M, Sun D, Zhou T. et al. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385 292 UK biobank participants. Eur Heart J 2020; 41 (11) 1182-1189
  • 224 Li X, Xue Q, Wang M. et al. Adherence to a healthy sleep pattern and incident heart failure: a prospective study of 408 802 UK Biobank participants. Circulation 2021; 143 (01) 97-99
  • 225 Li X, Zhou T, Ma H. et al. Healthy sleep patterns and risk of incident arrhythmias. J Am Coll Cardiol 2021; 78 (12) 1197-1207
  • 226 Liu S, Wang Y, Lu Q. et al. Association of healthy sleep pattern with risk of recurrent cardiovascular events among patients with coronary heart disease. Eur Heart J Qual Care Clin Outcomes 2023; 9 (07) 699-706
  • 227 Song Q, Wang M, Zhou T. et al. The lifestyle-related cardiovascular risk is modified by sleep patterns. Mayo Clin Proc 2022; 97 (03) 519-530
  • 228 Zhong Q, Qin Z, Wang X. et al. Healthy sleep pattern reduce the risk of cardiovascular disease: a 10-year prospective cohort study. Sleep Med 2023; 105: 53-60
  • 229 Nambiema A, Lisan Q, Vaucher J. et al. Healthy sleep score changes and incident cardiovascular disease in European prospective community-based cohorts. Eur Heart J 2023; 44 (47) 4968-4978