RSS-Feed abonnieren
DOI: 10.1055/a-2589-5014
Selective Open-Shell Nickel Catalysis Driven by Redox-Transmetalation
These works were supported by ShanghaiTech University startup funding.

Abstract
Reductive cross-electrophile coupling of organic halides facilitated by open-shell Ni catalysis has emerged as a powerful strategy for the efficient construction of molecular complexity. Despite significant advances, the diversity of catalytic systems has remained relatively limited, as the reductive potential of Ni species is highly dependent on the ligand employed. Recently, we identified organometallic zirconaaziridine as an effective redox-transmetalating reagent in Ni catalysis, enabling two distinct applications: diastereoselectively modulable catalytic C(sp2)-glycosylation and the selective consecutive assembly of C(sp2) fragments at a methylene CH2 carbon. Notably, extensive experimental and computational studies support a sequential reduction mechanism, wherein oxidative addition of Ni(I)–X to C(sp2)–I, halide abstraction of C(sp3)–I by C(sp2)–Ni(I), and radical capture by C(sp2)–Ni(II) proceed with high selectivity.
1 Introduction
2 Redox-Transmetalation
3 Example 1: Diastereoselective C(sp2)-Glycosylation
4 Example 2: Consecutive Three-Component Cross-Electrophile Coupling
5 Summary
Key words
nickel catalysis - cross-electrophile coupling - redox-transmetalation - zirconaaziridine - diastereoselectivity - glycosylationPublikationsverlauf
Eingereicht: 17. Februar 2025
Angenommen nach Revision: 16. April 2025
Accepted Manuscript online:
16. April 2025
Artikel online veröffentlicht:
28. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Yi L, Ji T, Chen K.-Q, Chen X.-Y, Rueping M. CCS Chem. 2022; 4: 9
- 1b Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
- 2a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 2b Kranthikumar R. Organometallics 2022; 41: 667
- 2c Phapale VB, Cárdenas DJ. Chem. Soc. Rev. 2009; 38: 1598
- 3 Talavera L, Odena C, Martin R. Adv. Catal. 2024; 74: 133
- 4 Romano C, Martin R. Nat. Rev. Chem. 2024; 8: 833
- 5a Day CS, Martin R. Chem. Soc. Rev. 2023; 52: 6601
- 5b Diccianni J, Lin Q, Diao T. Acc. Chem. Res. 2020; 53: 906
- 5c Diccianni JB, Diao T. Trends Chem. 2019; 1: 830
- 6 Ehehalt LE, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Chem. Rev. 2024; 124: 13397
- 7 Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
- 8a Ju L, Lin Q, LiBretto NJ, Wagner CL, Hu CT, Miller JT, Diao T. J. Am. Chem. Soc. 2021; 143: 14458
- 8b Turro RF, Wahlman LH, Tong ZJ, Chen X, Yang M, Chen EP, Hong X, Hadt RG, Houk KN, Yang YF, Reisman SE. J. Am. Chem. Soc. 2023; 145: 14705
- 9a Tang T, Hazra A, Min DS, Williams WL, Jones E, Doyle AG, Sigman MS. J. Am. Chem. Soc. 2023; 145: 8689
- 9b Cagan DA, Bim D, McNicholas BJ, Kazmierczak NP, Oyala PH, Hadt RG. Inorg. Chem. 2023; 62: 9538
- 10 Wagner CL, Herrera G, Lin Q, Hu CT, Diao T. J. Am. Chem. Soc. 2021; 143: 5295
- 11 Lin Q, Spielvogel EH, Diao T. Chem 2023; 9: 1295
- 12 Lin Q, Fu Y, Liu P, Diao T. J. Am. Chem. Soc. 2021; 143: 14196
- 13a Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. J. Am. Chem. Soc. 2021; 143: 21024
- 13b Liu J, Lei C, Gong H. Sci. China Chem. 2019; 62: 1492
- 13c Liu J, Ye Y, Sessler JL, Gong H. Acc. Chem. Res. 2020; 53: 1833
- 14a Cavalcanti LN, Molander GA. Top. Curr. Chem. 2016; 374: 39
- 14b Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
- 15a Franke MC, Weix DJ. Isr. J. Chem. 2024; 64: e202300089
- 15b Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
- 15c Ibrahim MY. S, Cumming GR, Gonzalez de Vega R, Garcia-Losada P, de Frutos O, Kappe CO, Cantillo D. J. Am. Chem. Soc. 2023; 145: 17023
- 15d Luo J, Hu B, Wu W, Hu M, Liu TL. Angew. Chem. Int. Ed. 2021; 60: 6107
- 16 Wu T.-F, Zhang Y.-J, Fu Y, Liu F.-J, Tang J.-T, Liu P, Toste FD, Ye B. Chem 2021; 7: 1963
- 17 Gan Y, Zhou J.-F, Li X, Liu J.-R, Liu F.-J, Hong X, Ye B. J. Am. Chem. Soc. 2024; 146: 16753
- 18a Shang W, Shi R, Niu D. Chin. J. Chem. 2023; 41: 2217
- 18b Chen A, Yang B, Zhou Z, Zhu F. Chem. Catal. 2022; 2: 3430
- 19 Zhang C, Xu S.-Y, Zuo H, Zhang X, Dang Q.-D, Niu D. Nat. Synth. 2023; 2: 251
- 20 Liu J, Gong H. Org. Lett. 2018; 20: 7991
- 21 Li X, Gan Y, Wang Y.-Y, Ye B. J. Am. Chem. Soc. 2024; 146: 35275
- 22a Belal M, Li Z, Lu X, Yin G. Sci. China Chem. 2021; 64: 513
- 22b Tu H.-Y, Zhu S, Qing F.-L, Chu L. Synthesis 2020; 52: 1346
- 23 Xu W, Zheng P, Xu T. Org. Lett. 2020; 22: 8643
- 24a Wotal AC, Ribson RD, Weix DJ. Organometallics 2014; 33: 5874
- 24b Shi R, Hu X. Angew. Chem. Int. Ed. 2019; 58: 7454
- 24c Xu S, Wang K, Kong W. Org. Lett. 2019; 21: 7498
- 24d Chen H, Yue H, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2022; 61: e202204144
- 24e Jiang Y, Yang K, Wei Y, Wang Q, Li S.-J, Lan Y, Koh MJ. Angew. Chem. Int. Ed. 2022; 61: e202211043
- 25 Day CS, Do CD, Odena C, Benet-Buchholz J, Xu L, Foroutan-Nejad C, Hopmann KH, Martin R. J. Am. Chem. Soc. 2022; 144: 13109