RSS-Feed abonnieren
DOI: 10.1055/a-2572-0925
Divergent Carbocyanation and Hydrocyanation of Alkynes Enabled by Photoinduced Nickel-Catalyzed Homolytic Bond Cleavage of C(sp3)–N Bond in Isonitriles
We are grateful for the financial support provided by the Fundamental Research Funds for the Central Universities (2232024A-03 and 2232024Y-01) and the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (22122101).

Abstract
Catalytic strategies for breaking and forming chemical bonds are longstanding goals in chemical synthesis. However, the activation of inert chemical bonds remains a significant challenge. Recently, our group successfully developed a C(sp3)–N bond homolytic activation strategy for isonitriles by using an in situ-generated electronically active nickel complex. This strategy bypasses the thermodynamically unfavorable two-electron or one-electron oxidative addition process, allowing us to invent an unprecedented ‘cut-and-sew’ reaction using isonitriles and alkynes. This transformation proceeds under simple and mild conditions, demonstrating a broad substrate scope with excellent functional-group compatibility and atom economy. Moreover, we applied this activation mode to develop a selective hydrocyanation of alkynes with isonitriles as cyanating agents in the presence of an exogenous photocatalyst.
1 Introduction
2 Discovery of the Photoactivation Process of Nickel–Isonitrile Complexes
3 Photoinduced Nickel-Catalyzed Cut-and-Sew Reaction of Isonitriles and Arylalkynes
4 Dual Nickel/Photoredox-Catalyzed Hydrocyanation of Alkynes with Isonitriles
5 Proposed Reaction Pathways
6 Conclusion and Perspectives
Key words
C(sp3)–N bond activation - nickel catalysis - hydrocyanation - alkynes - isonitriles - photocatalysisPublikationsverlauf
Eingereicht: 25. Februar 2025
Angenommen nach Revision: 01. April 2025
Accepted Manuscript online:
01. April 2025
Artikel online veröffentlicht:
14. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
-
1a
Metal-Catalyzed Cross-Coupling Reactions and More
.
de Meijere A,
Bräse S,
Oestreich M.
Wiley–VCH; 2014:
- 1b Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
- 1c Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 1d Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
- 2a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 2b Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 2c Ananikov VP. ACS Catal. 2015; 5: 1964
- 2d Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 2e Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 2f Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 2g Boit TB, Bulger AS, Dander JE, Garg NK. ACS Catal. 2020; 10: 12109
- 3a Blakey SB, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 6046
- 3b Huang C.-Y, Doyle AG. J. Am. Chem. Soc. 2012; 134: 9541
- 3c Maity P, Shacklady-McAtee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
- 3d Tobisu M, Nakamura K, Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
- 3e Hie L, Fine Nathel NF, Shah TK, Baker EL, Hong X, Yang Y.-F, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
- 3f Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
- 3g Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
- 3h Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
- 4a Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
- 4b He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481
- 4c Plunkett S, Basch CH, Santana SO, Watson MP. J. Am. Chem. Soc. 2019; 141: 2257
- 4d Dorsheimer JR, Ashley MA, Rovis T. J. Am. Chem. Soc. 2021; 143: 19294
- 4e Yan F, Bai J.-F, Dong Y, Liu S, Li C, Du C.-X, Li Y. JACS Au 2022; 2: 2522
- 4f Dorsheimer JR, Rovis T. J. Am. Chem. Soc. 2023; 145: 24367
- 4g Twitty JC, Hong Y, Garcia B, Tsang S, Liao J, Schultz DM, Hanisak J, Zultanski SL, Dion A, Kalyani D, Watson MP. J. Am. Chem. Soc. 2023; 145: 5684
- 4h Zhang X, Shen Y, Rovis T. J. Am. Chem. Soc. 2023; 145: 3294
- 5a Gu Y, Yin H, Wakeling M, An J, Martin R. ACS Catal. 2022; 12: 1031
- 5b Kariofillis SK, Jiang S, Żurański AM, Gandhi SS, Martinez Alvarado JI, Doyle AG. J. Am. Chem. Soc. 2022; 144: 1045
- 5c Romano C, Talavera L, Gómez-Bengoa E, Martin R. J. Am. Chem. Soc. 2022; 144: 11558
- 6a Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
- 6b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 6c Wenger OS. J. Am. Chem. Soc. 2018; 140: 13522
- 6d Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
- 6e Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee S.-g. Chem. Rev. 2020; 120: 13382
- 6f Wenger OS. Chem. Eur. J. 2021; 27: 2270
- 6g Cheung KP. S, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543
-
6h
Song C,
Song H,
Yu S.
Sci. China Chem. 2024; in press
- 7a Hwang SJ, Powers DC, Maher AG, Anderson BL, Hadt RG, Zheng S.-L, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2015; 137: 6472
- 7b Mondal P, Pirovano P, Das A, Farquhar ER, McDonald AR. J. Am. Chem. Soc. 2018; 140: 1834
- 7c Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
- 7d Cagan DA, Bím D, Silva B, Kazmierczak NP, McNicholas BJ, Hadt RG. J. Am. Chem. Soc. 2022; 144: 6516
- 8 Qin J, Li Y, Hu Y, Huang Z, Miao W, Chu L. J. Am. Chem. Soc. 2024; 146: 27583
- 9a Nakao Y, Yukawa T, Hirata Y, Oda S, Satoh J, Hiyama T. J. Am. Chem. Soc. 2006; 128: 7116
- 9b Nakao Y, Yada A, Ebata S, Hiyama T. J. Am. Chem. Soc. 2007; 129: 2428
- 9c Hirata Y, Yukawa T, Kashihara N, Nakao Y, Hiyama T. J. Am. Chem. Soc. 2009; 131: 10964
- 9d Nakao Y, Yada A, Hiyama T. J. Am. Chem. Soc. 2010; 132: 10024
- 10a Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
- 10b May AM, Dempsey JL. Chem. Sci. 2024; 15: 6661
- 11 Yamamoto Y, Takahata H, Takei F. J. Organomet. Chem. 1997; 545–546: 369
-
12 CCDC 2306812 contains the supplementary crystallographic data for complex A. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 13a Wille U. Chem. Rev. 2013; 113: 813
- 13b Zhu S, Zhao X, Li H, Chu L. Chem. Soc. Rev. 2021; 50: 10836
- 14 Zhang X, Xie X, Liu Y. J. Am. Chem. Soc. 2018; 140: 7385
- 15 Palermo AF, Chiu BS. Y, Patel P, Rousseaux SA. L. J. Am. Chem. Soc. 2023; 145: 24981
- 16 Huang Z, Qin J, Hu Y, Zhu S, Chu L. Org. Lett. 2024; 26: 10763