Semin Respir Crit Care Med
DOI: 10.1055/a-2557-8463
Review Article

The Critical Role of Sleep in Enhancing Pulmonary Rehabilitation Outcomes

Mario Henríquez-Beltrán
1   Translational Research in Respiratory Medicine, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa Maria, Lleida, Spain
2   CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
3   Núcleo de Investigación en Ciencias de la Salud, Universidad Adventista de Chile, Chillán, Chile
4   Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Chile
,
Jessica González
1   Translational Research in Respiratory Medicine, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa Maria, Lleida, Spain
2   CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
,
Gonzalo Labarca
5   Departamento de Enfermedades Respiratorias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
,
Adriano D.S. Targa
1   Translational Research in Respiratory Medicine, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa Maria, Lleida, Spain
2   CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
› Author Affiliations
Funding The authors are supported by the Instituto de Salud Carlos III (ISCIII) through the projects PI22/00216 and COV20/00110, co-funded by European Union (Fondo Europeo de Desarrollo Regional-FEDER “Una manera de hacer Europa”), Centro de Investigación Biomédica en Red—Enfermedades Respiratorias (CIBERES), Donation Program “estar preparados” (UNESPA), Jané Mateu Foundation, and Sociedad Española de Neumología y Cirugía Torácica (SEPAR/1555–2024). Mario Henríquez-Beltrán and Adriano D.S. Targa have received financial support from Instituto de Salud Carlos III (PFIS 2023: FI23/00253 and Miguel Servet 2023: CP23/00095, respectively), co-funded by European Union (Fondo Social Europeo Plus, FSE + ).

Abstract

Pulmonary rehabilitation is a comprehensive, interdisciplinary intervention that aims to enhance the physical and psychological well-being of individuals with chronic respiratory diseases. This approach entails the implementation of tailored therapies, including exercise training, education, and behavioral modification. Sleep plays a crucial role in numerous physiological processes, including the regulation of inflammation and tissue repair, both of which are fundamental to the efficacy of rehabilitation. A paucity of optimal sleep health has been associated with deleterious effects on pivotal factors that are indispensable for favorable outcomes in pulmonary rehabilitation, including mental and physical health and immune function. This, in turn, may increase susceptibility to impaired pulmonary function. The integration of pulmonary rehabilitation protocols with healthy sleep practices is expected to yield significant improvements in lung function and overall health, which will, in turn, promote long-term adherence to rehabilitative behaviors. This study aims to examine the relationship between sleep health and pulmonary rehabilitation outcomes.

Authors' Contributions

Study design: M.H.B., A.D.S.T. Data abstraction and collection: J.G., M.H.B. Initial draft: All authors. Review of the manuscript for important intellectual content: J.G., A.D.S.T., G.L. All authors have seen and approved the manuscript.




Publication History

Article published online:
31 March 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Schols AM, Ferreira IM, Franssen FM. et al. Nutritional assessment and therapy in COPD: a European Respiratory Society statement. Eur Respir J 2014; 44 (06) 1504-1520
  • 2 Beijers RJHCG, Steiner MC, Schols AMWJ. The role of diet and nutrition in the management of COPD. Eur Respir Rev 2023; 32 (168) 230003
  • 3 Ramar K, Malhotra RK, Carden KA. et al. Sleep is essential to health: an American Academy of Sleep Medicine position statement. J Clin Sleep Med 2021; 17 (10) 2115-2119
  • 4 Holland AE, Cox NS, Houchen-Wolloff L. et al. Defining modern pulmonary rehabilitation. An Official American Thoracic Society Workshop report. Ann Am Thorac Soc 2021; 18 (05) e12-e29
  • 5 Blackstock FC, Lareau SC, Nici L. et al; American Thoracic Society, Thoracic Society of Australia and New Zealand, Canadian Thoracic Society, and British Thoracic Society. Chronic obstructive pulmonary disease education in pulmonary rehabilitation. An Official American Thoracic Society/Thoracic Society of Australia and New Zealand/Canadian Thoracic Society/British Thoracic Society Workshop report. Ann Am Thorac Soc 2018; 15 (07) 769-784
  • 6 González J, Benítez ID, Carmona P. et al; CIBERESUCICOVID Project (COV20/00110, ISCIII). Pulmonary function and radiologic features in survivors of critical COVID-19: a 3-month prospective cohort. Chest 2021; 160 (01) 187-198
  • 7 Labarca G, Henríquez-Beltrán M, Lastra J. et al. Analysis of clinical symptoms, radiological changes and pulmonary function data 4 months after COVID-19. Clin Respir J 2021; 15 (09) 992-1002
  • 8 Labarca G, Henríquez-Beltrán M, Lamperti L. et al. Impact of obstructive sleep apnea (OSA) in COVID-19 survivors, symptoms changes between 4-months and 1 year after the COVID-19 infection. Front Med (Lausanne) 2022; 9 (June): 884218
  • 9 Henríquez-Beltrán M, Vaca R, Benítez ID. et al. Sleep and circadian health of critical survivors: a 12-month follow-up study. Crit Care Med 2024; 52 (08) 1206-1217
  • 10 Henríquez-Beltrán M, Labarca G, Cigarroa I. et al. Sleep health and the circadian rest-activity pattern four months after COVID-19. J Bras Pneumol 2022; 48 (03) e20210398
  • 11 World Health Organization. Clinical management of COVID-19: living guideline. Geneva: World Health Organization. Accessed September 15, 2022 at: https://iris.who.int/handle/10665/362783
  • 12 Meléndez-Oliva E, Martínez-Pozas O, Cuenca-Zaldívar JN, Villafañe JH, Jiménez-Ortega L, Sánchez-Romero EA. Efficacy of pulmonary rehabilitation in post-COVID-19: a systematic review and meta-analysis. Biomedicines 2023; 11 (08) 2213
  • 13 Szarvas Z, Fekete M, Szollosi GJ. et al. Optimizing cardiopulmonary rehabilitation duration for long COVID patients: an exercise physiology monitoring approach. Geroscience 2024; 46 (05) 4163-4183
  • 14 Hockele LF, Sachet Affonso JV, Rossi D, Eibel B. Pulmonary and functional rehabilitation improves functional capacity, pulmonary function and respiratory muscle strength in post COVID-19 patients: pilot clinical trial. Int J Environ Res Public Health 2022; 19 (22) 14899
  • 15 Frei A, Radtke T, Dalla Lana K. et al. Effectiveness of a long-term home-based exercise training program in patients with COPD after pulmonary rehabilitation: a multicenter randomized controlled trial. Chest 2022; 162 (06) 1277-1286
  • 16 Smolensky MH, Hermida RC, Portaluppi F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med Rev 2017; 33: 4-16
  • 17 Colten HR, Altevogt BM. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. Washington (DC): National Academic Press; 2006
  • 18 Sowho M, Amatoury J, Kirkness JP, Patil SP. Sleep and respiratory physiology in adults. Clin Chest Med 2014; 35 (03) 469-481
  • 19 Brinkman JE, Toro F, Sharma S. Physiology, Respiratory Drive. Treasure Island (FL): 2024
  • 20 Fraigne JJ, Orem JM. Phasic motor activity of respiratory and non-respiratory muscles in REM sleep. Sleep 2011; 34 (04) 425-434
  • 21 Meyer N, Harvey AG, Lockley SW, Dijk D-J. Circadian rhythms and disorders of the timing of sleep. Lancet 2022; 400 (10357): 1061-1078
  • 22 Henríquez-Beltrán M, Jeria C, Cruces-Andrews E, Belmonte T. Circadian rest-activity pattern and cardiometabolic illnesses. Rev Med Clin Las Condes 2024; 35 (03) 290-298 . Accessed at: https://www.sciencedirect.com/science/article/pii/S0716864024000397
  • 23 Ma MAME. Neuroanatomy, Nucleus Suprachiasmatic. 2023. Accessed at: https://www.ncbi.nlm.nih.gov/books/NBK546664/
  • 24 Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 2012; 35: 445-462
  • 25 Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 2006; 15 (Spec No 2): R271-R277
  • 26 Giri A, Wang Q, Rahman I, Sundar IK. Circadian molecular clock disruption in chronic pulmonary diseases. Trends Mol Med 2022; 28 (06) 513-527
  • 27 Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309 (10) L1056-L1075
  • 28 Mortola JP. Breathing around the clock: an overview of the circadian pattern of respiration. Eur J Appl Physiol 2004; 91 (2-3): 119-129
  • 29 Buchanan GF. Timing, sleep, and respiration in health and disease. Prog Mol Biol Transl Sci 2013; 119: 191-219
  • 30 Stephenson R. Circadian rhythms and sleep-related breathing disorders. Sleep Med 2007; 8 (06) 681-687
  • 31 Nosal C, Ehlers A, Haspel JA. Why lungs keep time: circadian rhythms and lung immunity. Annu Rev Physiol 2020; 82: 391-412
  • 32 Scheer FAJL, Hilton MF, Evoniuk HL. et al. The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles. Proc Natl Acad Sci U S A 2021; 118 (37) e2018486118
  • 33 Xu H, Huang L, Zhao J, Chen S, Liu J, Li G. The circadian clock and inflammation: a new insight. Clin Chim Acta 2021; 512: 12-17
  • 34 Gu W, Tian Z, Tian W. et al. Association of rest-activity circadian rhythm with chronic respiratory diseases, a cross-section survey from NHANES 2011-2014. Respir Med 2023; 209: 107147
  • 35 Cardinali DP, Brown GM, Pandi-Perumal SR. Chronotherapy. Handb Clin Neurol 2021; 179: 357-370
  • 36 Adam D. Core concept: emerging science of chronotherapy offers big opportunities to optimize drug delivery. Proc Natl Acad Sci U S A 2019; 116 (44) 21957-21959
  • 37 Kaur J, Davoodi-Bojd E, Fahmy LM. et al. Magnetic Resonance Imaging and Modeling of the Glymphatic System. Diagnostics (Basel, Switzerland) 2020;10(6).
  • 38 Kaur J, Fahmy LM, Davoodi-Bojd E. et al. Waste clearance in the brain. Front Neuroanat 2021; 15: 665803
  • 39 Fultz NE, Bonmassar G, Setsompop K. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 2019; 366 (6465): 628-631
  • 40 Dakterzada F, Benítez ID, Targa A. et al. Cerebrospinal fluid lipidomic fingerprint of obstructive sleep apnoea in Alzheimer's disease. Alzheimers Res Ther 2023; 15 (01) 134
  • 41 Wright CE, Erblich J, Valdimarsdottir HB, Bovbjerg DH. Poor sleep the night before an experimental stressor predicts reduced NK cell mobilization and slowed recovery in healthy women. Brain Behav Immun 2007; 21 (03) 358-363
  • 42 Fondell E, Axelsson J, Franck K. et al. Short natural sleep is associated with higher T cell and lower NK cell activities. Brain Behav Immun 2011; 25 (07) 1367-1375
  • 43 Patel SR, Malhotra A, Gao X, Hu FB, Neuman MI, Fawzi WW. A prospective study of sleep duration and pneumonia risk in women. Sleep 2012; 35 (01) 97-101
  • 44 Chuang L-P, Hsieh M-J, Chen N-H. et al. Total sleep time in the Taiwan obstructive lung disease cohort. Int J Environ Res Public Health 2021; 18 (13) 7080
  • 45 Ruan Z, Li D, Cheng X. et al. The association between sleep duration, respiratory symptoms, asthma, and COPD in adults. Front Med (Lausanne) 2023; 10: 1108663
  • 46 Chang C-H, Chuang L-P, Lin S-W. et al. Factors responsible for poor sleep quality in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2016; 16 (01) 118
  • 47 Omachi TA, Blanc PD, Claman DM. et al. Disturbed sleep among COPD patients is longitudinally associated with mortality and adverse COPD outcomes. Sleep Med 2012; 13 (05) 476-483
  • 48 Luyster FS, Shi X, Baniak LM, Morris JL, Chasens ER. Associations of sleep duration with patient-reported outcomes and health care use in US adults with asthma. Ann Allergy Asthma Immunol 2020; 125 (03) 319-324
  • 49 Wang N, Sun Y, Zhang H. et al. Long-term night shift work is associated with the risk of atrial fibrillation and coronary heart disease. Eur Heart J 2021; 42 (40) 4180-4188
  • 50 Li J, Yang L, Yao Y. et al. Associations between long-term night shift work and incidence of chronic obstructive pulmonary disease: a prospective cohort study of 277,059 UK biobank participants. BMC Med 2024; 22 (01) 16
  • 51 Dáttilo M, Antunes HKM, Galbes NMN. et al. Effects of sleep deprivation on acute skeletal muscle recovery after exercise. Med Sci Sports Exerc 2020; 52 (02) 507-514
  • 52 Lamon S, Morabito A, Arentson-Lantz E. et al. The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiol Rep 2021; 9 (01) e14660
  • 53 Tanner RE, Brunker LB, Agergaard J. et al. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation. J Physiol 2015; 593 (18) 4259-4273
  • 54 Morrison M, Halson SL, Weakley J, Hawley JA. Sleep, circadian biology and skeletal muscle interactions: implications for metabolic health. Sleep Med Rev 2022; 66: 101700
  • 55 Dattilo M, Antunes HKM, Medeiros A. et al. Paradoxical sleep deprivation induces muscle atrophy. Muscle Nerve 2012; 45 (03) 431-433
  • 56 Rae DE, Chin T, Dikgomo K. et al. One night of partial sleep deprivation impairs recovery from a single exercise training session. Eur J Appl Physiol 2017; 117 (04) 699-712
  • 57 Slavish DC, Taylor DJ, Dietch JR. et al. Intraindividual variability in sleep and levels of systemic inflammation in nurses. Psychosom Med 2020; 82 (07) 678-688
  • 58 Irwin M. Effects of sleep and sleep loss on immunity and cytokines. Brain Behav Immun 2002; 16 (05) 503-512
  • 59 Van Cauter E, Leproult R, Plat L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000; 284 (07) 861-868
  • 60 Dvorakova J, Wiesnerova L, Chocholata P. et al. Human cells with osteogenic potential in bone tissue research. Biomed Eng Online 2023; 22 (01) 33
  • 61 Simpson NS, Gibbs EL, Matheson GO. Optimizing sleep to maximize performance: implications and recommendations for elite athletes. Scand J Med Sci Sports 2017; 27 (03) 266-274
  • 62 Henríquez-Beltrán M, Dreyse J, Jorquera J. et al. The U-shaped association between sleep duration, all-cause mortality and cardiovascular risk in a Hispanic/Latino clinically based cohort. J Clin Med 2023; 12 (15) 4961
  • 63 Wedzicha JA, Seemungal TAR. COPD exacerbations: defining their cause and prevention. Lancet 2007; 370 (9589): 786-796
  • 64 Menzies-Gow A, Busse WW, Castro M, Jackson DJ. Prevention and treatment of asthma exacerbations in adults. J Allergy Clin Immunol Pract 2021; 9 (07) 2578-2586
  • 65 Panagioti M, Scott C, Blakemore A, Coventry PA. Overview of the prevalence, impact, and management of depression and anxiety in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014; 9: 1289-1306
  • 66 Aldabayan YS. Mental health and sleep quality among patients with asthma and COPD. Front Med (Lausanne) 2023; 10: 1181742
  • 67 Ji Z, López-de-Andrés A, Jiménez-García R. et al. Mental health in patients with asthma: a population-based case-control study. Respir Med 2022; 193: 106758
  • 68 Ghaemi Kerahrodi J, Brähler E, Wiltink J. et al. Association between medicated obstructive pulmonary disease, depression and subjective health: results from the population-based Gutenberg Health Study. Sci Rep 2019; 9 (01) 20252
  • 69 Laurin C, Moullec G, Bacon SL, Lavoie KL. Impact of anxiety and depression on chronic obstructive pulmonary disease exacerbation risk. Am J Respir Crit Care Med 2012; 185 (09) 918-923
  • 70 Rahi MS, Thilagar B, Balaji S. et al. The impact of anxiety and depression in chronic obstructive pulmonary disease. Adv Respir Med 2023; 91 (02) 123-134
  • 71 Braeken DCW, Spruit MA, Houben-Wilke S. et al. Impact of exacerbations on adherence and outcomes of pulmonary rehabilitation in patients with COPD. Respirology 2017; 22 (05) 942-949
  • 72 Gordon CS, Waller JW, Cook RM, Cavalera SL, Lim WT, Osadnik CR. Effect of pulmonary rehabilitation on symptoms of anxiety and depression in COPD: a systematic review and meta-analysis. Chest 2019; 156 (01) 80-91
  • 73 Torres-Sánchez I, Rodríguez-Alzueta E, Cabrera-Martos I, López-Torres I, Moreno-Ramírez MP, Valenza MC. Cognitive impairment in COPD: a systematic review. J Bras Pneumol 2015; 41 (02) 182-190
  • 74 Rhyou H-I, Nam Y-H. Association between cognitive function and asthma in adults. Ann Allergy Asthma Immunol 2021; 126 (01) 69-74
  • 75 Du D, Zhang G, Xu D. et al. Prevalence and clinical characteristics of sleep disorders in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Sleep Med 2023; 112: 282-290
  • 76 Yoshizaki A, Nagano T, Izumi S. et al. Characteristics of the nocturnal desaturation waveform pattern of SpO2 in COPD patients: an observational study. Respir Res 2021; 22 (01) 276
  • 77 World Health Organization. Smoking is the leading cause of chronic obstructive pulmonary disease [Internet]. 2023. Accessed at: https://www.who.int/news/item/15-11-2023-smoking-is-the-leading-cause-of-chronic-obstructive-pulmonary-disease#:~:text=Tobaccosmokingaccountsforover70%25ofCOPD
  • 78 Zhang P, Chen B, Lou H. et al. Predictors and outcomes of obstructive sleep apnea in patients with chronic obstructive pulmonary disease in China. BMC Pulm Med 2022; 22 (01) 16
  • 79 Luyster FS, Buysse DJ, Strollo Jr PJJ. Comorbid insomnia and obstructive sleep apnea: challenges for clinical practice and research. J Clin Sleep Med 2010; 6 (02) 196-204
  • 80 Sweetman A, Lack L, McEvoy RD. et al. Bi-directional relationships between co-morbid insomnia and sleep apnea (COMISA). Sleep Med Rev 2021; 60: 101519
  • 81 Shin YH, Hwang J, Kwon R. et al; GBD 2019 Allergic Disorders Collaborators. Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Allergy 2023; 78 (08) 2232-2254
  • 82 Benjafield AV, Ayas NT, Eastwood PR. et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 2019; 7 (08) 687-698
  • 83 Teodorescu M, Barnet JH, Hagen EW, Palta M, Young TB, Peppard PE. Association between asthma and risk of developing obstructive sleep apnea. JAMA 2015; 313 (02) 156-164
  • 84 Oka S, Goto T, Hirayama A, Faridi MK, Camargo Jr. CAJ, Hasegawa K. Association of obstructive sleep apnea with severity of patients hospitalized for acute asthma. Ann Allergy Asthma Immunol 2020; 124 (02) 165-170.e4
  • 85 Senaratna CV, Walters EH, Hamilton G. et al. Nocturnal symptoms perceived as asthma are associated with obstructive sleep apnoea risk, but not bronchial hyper-reactivity. Respirology 2019; 24 (12) 1176-1182
  • 86 Sundbom F, Janson C, Malinovschi A, Lindberg E. Effects of coexisting asthma and obstructive sleep apnea on sleep architecture, oxygen saturation, and systemic inflammation in women. J Clin Sleep Med 2018; 14 (02) 253-259