RSS-Feed abonnieren
DOI: 10.1055/a-2555-1998
Functional Assessment of Meniscus Extrusion, Excursion, and Hoop Strain under Clinically Relevant Loaded Range of Motion Conditions in Meniscus-Intact and Meniscus Root-Deficient Knees using a Novel Biomechanical Model
Funding This study received some funding from the Mizzou Orthopaedics Innovation Fund and from Arthrex, Inc.
Abstract
The knee is meniscus-dependent, relying on the tissue's biomechanical properties to maintain joint health and function. Meniscus dysfunction has primarily been assessed by measuring tibiofemoral articular contact areas and pressures, which entail important limitations. Meniscus extrusion, excursion, and hoop strain are dynamic measures of meniscal function, which have potential advantages for clinically applicable biomechanical testing of meniscus. The objective of this study was to quantify meniscus extrusion, excursion, and hoop strain under clinically relevant loading and motion conditions in meniscus-intact and meniscus-deficient cadaveric knees using a novel model. Cadaveric knees (n = 8) were dynamically tested through a functional range of motion under 30 N of compressive load in a robotic testing system to determine meniscus translations at full extension and 30, 60, 90, and 100 degrees of flexion through 10 cycles. For meniscus-intact and meniscus-deficient (posterior meniscus root release) states, measurements for medial and lateral meniscus excursion, extrusion, and hoop strain were determined by calculating respective translations of fiducial tracking markers and were compared for statistically significant differences. In the meniscus-intact state, medial and lateral meniscus extrusion, excursion, and hoop strain metrics corresponded well to previously reported measurements, suggesting that this model has translational validity for assessing functional kinematics for clinical application. For both medial and lateral menisci, posterior root release was associated with significantly more meniscus extrusion and significantly less maximum meniscus hoop strain compared with the meniscus-intact status. For meniscus excursion, medial root release showed significant differences from the intact status only at a knee flexion angle of 100 degrees, whereas lateral root release differed significantly from the intact status at 60 and 90 degrees of knee flexion. Taken together, this study verifies that this model can effectively quantify meniscus extrusion, excursion, and hoop strain under clinically relevant loading and motion conditions in meniscus-intact and meniscus-deficient knees for use in preclinical studies aimed at assessing the severity of meniscus deficiency, as well as surgical interventions and postoperative management strategies intended to optimize meniscus preservation.
Publikationsverlauf
Eingereicht: 13. Februar 2025
Angenommen: 10. März 2025
Accepted Manuscript online:
11. März 2025
Artikel online veröffentlicht:
16. April 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Logerstedt DS, Scalzitti D, Risberg MA. et al. Knee stability and movement coordination impairments: knee ligament sprain revision 2017. J Orthop Sports Phys Ther 2017; 47 (11) A1-A47
- 2 Bronstein RD, Schaffer JC. Physical examination of the knee: meniscus, cartilage, and patellofemoral conditions. J Am Acad Orthop Surg 2017; 25 (05) 365-374
- 3 Aagaard H, Verdonk R. Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports 1999; 9 (03) 134-140
- 4 Markes AR, Hodax JD, Ma CB. Meniscus form and function. Clin Sports Med 2020; 39 (01) 1-12
- 5 Abusara Z, Andrews SHJ, Von Kossel M, Herzog W. Menisci protect chondrocytes from load-induced injury. Sci Rep 2018; 8 (01) 14150
- 6 Andrews S, Shrive N, Ronsky J. The shocking truth about meniscus. J Biomech 2011; 44 (16) 2737-2740
- 7 Jones RS, Keene GCR, Learmonth DJA. et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol) 1996; 11 (05) 295-300
- 8 Daszkiewicz K, Łuczkiewicz P. Biomechanics of the medial meniscus in the osteoarthritic knee joint. PeerJ 2021; 9: e12509
- 9 Sukopp M, Schall F, Hacker SP, Ignatius A, Dürselen L, Seitz AM. Influence of menisci on tibiofemoral contact mechanics in human knees: a systematic review. Front Bioeng Biotechnol 2021; 9: 765596
- 10 Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 1980; 51 (06) 871-879
- 11 Lee SJ, Aadalen KJ, Malaviya P. et al. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 2006; 34 (08) 1334-1344
- 12 Beamer BS, Walley KC, Okajima S. et al. Changes in contact area in meniscus horizontal cleavage tears subjected to repair and resection. Arthroscopy 2017; 33 (03) 617-624
- 13 Zhang AL, Miller SL, Coughlin DG, Lotz JC, Feeley BT. Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy. Knee 2015; 22 (05) 400-404
- 14 LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF. Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. J Bone Joint Surg Am 2014; 96 (06) 471-479
- 15 Paletta Jr GA, Manning T, Snell E, Parker R, Bergfeld J. The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 1997; 25 (05) 692-698
- 16 Smith PA, Bezold WA, Cook CR. et al. Kinematic analysis of lateral meniscal oblique radial tears in anterior cruciate ligament-reconstructed knees: untreated versus repair versus partial meniscectomy. Am J Sports Med 2022; 50 (09) 2381-2389
- 17 Berthiaume MJ, Raynauld JP, Martel-Pelletier J. et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 2005; 64 (04) 556-563
- 18 Daney BT, Aman ZS, Krob JJ. et al. Utilization of transtibial centralization suture best minimizes extrusion and restores tibiofemoral contact mechanics for anatomic medial meniscal root repairs in a cadaveric model. Am J Sports Med 2019; 47 (07) 1591-1600
- 19 Liu T, Shen X, Ji Q, Xiao J, Zuo J, Gao Z. The MRI-based 3D morphologic changes of knee meniscus under knee weight-bearing and early flexion conditions. Sci Rep 2021; 11 (01) 22122
- 20 Cook JL, Cook CR, Rucinski K, Stannard JP. Serial ultrasonographic imaging can predict failure after meniscus allograft transplantation. Ultrasound 2023; 31 (02) 139-146
- 21 Okazaki Y, Furumatsu T, Shimamura Y. et al. Time-dependent increase in medial meniscus extrusion after medial meniscus posterior root tear analyzed by using magnetic resonance imaging. Knee Surg Relat Res 2019; 31 (02) 120-125
- 22 Furumatsu T, Kodama Y, Kamatsuki Y, Hino T, Okazaki Y, Ozaki T. Meniscal extrusion progresses shortly after the medial meniscus posterior root tear. Knee Surg Relat Res 2017; 29 (04) 295-301
- 23 Chernchujit B, Prasetia R. Arthroscopic direct meniscal extrusion reduction: surgical tips to reduce persistent meniscal extrusion in meniscal root repair. Eur J Orthop Surg Traumatol 2018; 28 (04) 727-734
- 24 Schwer J, Ignatius A, Seitz AM. The biomechanical properties of human menisci: a systematic review. Acta Biomater 2024; 175: 1-26
- 25 Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 1998; 41 (04) 687-693
- 26 Englund M. The role of the meniscus in osteoarthritis genesis. Med Clin North Am 2009; 93 (01) 37-43 , x
- 27 Englund M, Roos EM, Lohmander LS. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 2003; 48 (08) 2178-2187
- 28 Lerer DB, Umans HR, Hu MX, Jones MH. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol 2004; 33 (10) 569-574
- 29 Arno S, Bell CP, Xia D. et al. Relationship between meniscal integrity and risk factors for cartilage degeneration. Knee 2016; 23 (04) 686-691
- 30 Cook JL, Kuroki K, Stoker AM, Monibi FA, Roller BL. Meniscal biology in health and disease. Connect Tissue Res 2017; 58 (3-4): 225-237
- 31 Masuda S, Furumatsu T, Okazaki Y. et al. Medial meniscus posterior root tear induces pathological posterior extrusion of the meniscus in the knee-flexed position: an open magnetic resonance imaging analysis. Orthop Traumatol Surg Res 2018; 104 (04) 485-489
- 32 Farivar D, Hevesi M, Fortier LM, Azua E, LaPrade RF, Chahla J. Meniscal extrusion measurements after posterior medial meniscus root tears: a systematic review and meta-analysis. Am J Sports Med 2023; 51 (12) 3325-3334
- 33 LaPrade CM, James EW, Cram TR, Feagin JA, Engebretsen L, LaPrade RF. Meniscal root tears: a classification system based on tear morphology. Am J Sports Med 2015; 43 (02) 363-369
- 34 Walczak BE, Miller K, Behun MA. et al. Quantifying the differential functional behavior between the medial and lateral meniscus after posterior meniscus root tears. PLoS One 2021; 16 (11) e0259678
- 35 Ma X, Liu Q, Xu D, Fu J, He Y, Huang J. Biomechanical impact of progressive meniscal extrusion on the knee joint: a finite element analysis. J Orthop Surg Res 2024; 19 (01) 754
- 36 Severyns M, Zot F, Harika-Germaneau G. et al. Extrusion and meniscal mobility evaluation in case of ramp lesion injury: a biomechanical feasibility study by 7T magnetic resonance imaging and digital volume correlation. Front Bioeng Biotechnol 2024; 11: 1289290
- 37 Shimozaki K, Nakase J, Oshima T. et al. Investigation of extrusion of the medial meniscus under full weight-loading conditions using upright weight-loading magnetic resonance imaging and ultrasonography. J Orthop Sci 2020; 25 (04) 652-657
- 38 MacLeod TD, Subburaj K, Wu S, Kumar D, Wyatt C, Souza RB. Magnetic resonance analysis of loaded meniscus deformation: a novel technique comparing participants with and without radiographic knee osteoarthritis. Skeletal Radiol 2015; 44 (01) 125-135
- 39 Noyes FR, Barber-Westin SD. A systematic review of the incidence and clinical significance of postoperative meniscus transplant extrusion. Knee Surg Sports Traumatol Arthrosc 2015; 23 (01) 290-302
- 40 Shimozaki K, Nakase J, Kanayama T. et al. Extrusion of the medial meniscus under a weight-loading condition in early knee osteoarthritis: an investigation using special upright magnetic resonance imaging. BMC Musculoskelet Disord 2023; 24 (01) 680
- 41 Barreira F, Gomes E, Oliveira S. et al. Meniscal extrusion in knees with and without osteoarticular pathology: a systematic review of normative values and cut-offs for diagnostic criteria. Knee 2023; 45: 156-167
- 42 Smith PA, Bezold WA, Cook CR. et al. Kinematic analysis of lateral meniscal oblique radial tears in the anterior cruciate ligament-deficient knee. Am J Sports Med 2021; 49 (14) 3898-3905
- 43 Yao J, Lancianese SL, Hovinga KR, Lee J, Lerner AL. Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res 2008; 26 (05) 673-684
- 44 Ishii Y, Ishikawa M, Nakashima Y. et al. Visualization of lateral meniscus extrusion during gait using dynamic ultrasonographic evaluation. J Med Ultrason 2023; 50 (04) 531-539