Am J Perinatol
DOI: 10.1055/a-2549-6551
Review Article

The Nonbacterial Infant Microbiome and Necrotizing Enterocolitis

1   Department of Pediatrics/Neonatology, SUNY Upstate Medical University, New York, New York
,
Jeffrey S. Shenberger
2   Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
,
Ricardo J. Rodriguez
3   Department of Pediatrics/Neonatology, Wake Forest University, Winston Salem, North Carolina
,
Avinash K. Shetty
4   Department of Pediatrics/Infectious Disease, Wake Forest University, Winston Salem, North Carolina
,
Parvesh M. Garg
3   Department of Pediatrics/Neonatology, Wake Forest University, Winston Salem, North Carolina
› Author Affiliations

Funding P.M.G. is partially supported by the NIGMS of the NIH under award number U54GM115428. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Abstract

Necrotizing enterocolitis (NEC) is among the most devastating neonatal illnesses of premature infants. Although it is a disease of multifactorial etiology associated with bacterial dysbiosis, several reports of viral and some fungal infections associated with NEC have been published. Despite the abundance of viruses—primarily bacteriophages, and “virus-like particles” in the normal infant gut flora, there is limited understanding of the contribution of these elements to newborn gut health and disease. This study aims to review existing evidence on normal newborn virome and mycobiome development and present insights into the complex inter-kingdom interactions between gut bacteria, viruses, and fungi in the intestinal ecosystem, exploring their potential role in predisposing the preterm infant to NEC.

Key Points

  • We have reviewed a number of viral and fungal infections reported in association with NEC-like illnesses.

  • Bacteriophages play a crucial role in the gut microbiome development, but their role in pathogenesis of NEC and potential for therapeutic use is unknown.

  • Development of next-gen metagenomic tools are needed to enhance our understanding of viral diversity, bacteriophages, and the gut virome in the context of neonatal health and disease.

Authors' Contributions

P.M.G. and N.J. designed the study. P.M.G., N.J., A.S., J.S.S., and R.J.R. wrote the manuscript. All the authors contributed to and approved the manuscript.




Publication History

Received: 03 January 2025

Accepted: 03 March 2025

Accepted Manuscript online:
04 March 2025

Article published online:
16 April 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Samuels N, van de Graaf RA, de Jonge RCJ, Reiss IKM, Vermeulen MJ. Risk factors for necrotizing enterocolitis in neonates: a systematic review of prognostic studies. BMC Pediatr 2017; 17 (01) 105
  • 2 Patel RM, Ferguson J, McElroy SJ, Khashu M, Caplan MS. Defining necrotizing enterocolitis: current difficulties and future opportunities. Pediatr Res 2020; 88 (Suppl. 01) 10-15
  • 3 Yi C, Chen J, She X. The emerging role of the gut virome in necrotizing enterocolitis. Heliyon 2024; 10 (09) e30496
  • 4 Zeng S, Zeng L, Yang P, Zheng Q, Wang S. Gut virome: The next frontier in the treatment of necrotizing enterocolitis. Chin Med J (Engl) 2024; 137 (05) 562-564
  • 5 Mizrahi A, Barlow O, Berdon W, Blanc WA, Silverman WA. Necrotizing enterocolitis in premature infants. J Pediatr 1965; 66: 697-705
  • 6 Coggins SA, Wynn JL, Weitkamp JH. Infectious causes of necrotizing enterocolitis. Clin Perinatol 2015; 42 (01) 133-154 , ix ix
  • 7 Hackam D, Caplan M. Necrotizing enterocolitis: pathophysiology from a historical context. Semin Pediatr Surg 2018; 27 (01) 11-18
  • 8 Ullrich T, Tang YW, Correa H. et al. Absence of gastrointestinal pathogens in ileum tissue resected for necrotizing enterocolitis. Pediatr Infect Dis J 2012; 31 (04) 413-414
  • 9 Gewolb IH, Schwalbe RS, Taciak VL, Harrison TS, Panigrahi P. Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1999; 80 (03) F167-F173
  • 10 Warner BB, Deych E, Zhou Y. et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet 2016; 387 (10031): 1928-1936
  • 11 Mani S, Hazra S, Hagan J, Sisson A, Nair J, Pammi M. Viral infections and neonatal necrotizing enterocolitis: a meta-analysis. Pediatrics 2023; 152 (01) e2022060876
  • 12 Sampah MES, Hackam DJ. Prenatal immunity and influences on necrotizing enterocolitis and associated neonatal disorders. Front Immunol 2021; 12: 650709
  • 13 Hackam DJ, Sodhi CP. Bench to bedside - new insights into the pathogenesis of necrotizing enterocolitis. Nat Rev Gastroenterol Hepatol 2022; 19 (07) 468-479
  • 14 Scheese DJ, Sodhi CP, Hackam DJ. New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics. Semin Pediatr Surg 2023; 32 (03) 151309
  • 15 Chan KL, Wong KF, Luk JM. Role of LPS/CD14/TLR4-mediated inflammation in necrotizing enterocolitis: pathogenesis and therapeutic implications. World J Gastroenterol 2009; 15 (38) 4745-4752
  • 16 Jilling T, Simon D, Lu J. et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 2006; 177 (05) 3273-3282
  • 17 Cho SX, Rudloff I, Lao JC. et al. Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities. Nat Commun 2020; 11 (01) 5794
  • 18 Hourigan SK, Ta A, Wong WS. et al. The microbiome in necrotizing enterocolitis: a case report in twins and minireview. Clin Ther 2016; 38 (04) 747-753
  • 19 Weitkamp JH, Rosen MJ, Zhao Z. et al. Small intestinal intraepithelial TCRγδ+ T lymphocytes are present in the premature intestine but selectively reduced in surgical necrotizing enterocolitis. PLoS One 2014; 9 (06) e99042
  • 20 Andrews WW, Goldenberg RL, Faye-Petersen O, Cliver S, Goepfert AR, Hauth JC. The Alabama Preterm Birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am J Obstet Gynecol 2006; 195 (03) 803-808
  • 21 Been JV, Lievense S, Zimmermann LJ, Kramer BW, Wolfs TG. Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. J Pediatr 2013; 162 (02) 236-42.e2
  • 22 Mir IN, Sánchez-Rosado M, Reis J. et al. Impact of fetal inflammatory response on the severity of necrotizing enterocolitis in preterm infants. Pediatr Res 2024; 95 (05) 1308-1315
  • 23 Boccia D, Stolfi I, Lana S, Moro ML. Nosocomial necrotising enterocolitis outbreaks: epidemiology and control measures. Eur J Pediatr 2001; 160 (06) 385-391
  • 24 Bagci S, Eis-Hübinger AM, Franz AR. et al. Detection of astrovirus in premature infants with necrotizing enterocolitis. Pediatr Infect Dis J 2008; 27 (04) 347-350
  • 25 Turcios-Ruiz RM, Axelrod P, St John K. et al. Outbreak of necrotizing enterocolitis caused by norovirus in a neonatal intensive care unit. J Pediatr 2008; 153 (03) 339-344
  • 26 Skeath T, Stewart C, Waugh S, Embleton N, Cummings S, Berrington J. Cytomegalovirus and other common enteric viruses are not commonly associated with NEC. Acta Paediatr 2016; 105 (01) 50-52
  • 27 Panesso-Gómez S, Shimamura M, Conces M. et al. Detection of cytomegalovirus in intestinal tissue of infants with necrotizing enterocolitis or spontaneous intestinal perforation. J Pediatr 2019; 214: 34-40
  • 28 Rotbart HA, Levin MJ. How contagious is necrotizing enterocolitis?. Pediatr Infect Dis 1983; 2 (05) 406-413
  • 29 Rotbart HA, Levin MJ, Yolken RH, Manchester DK, Jantzen J. An outbreak of rotavirus-associated neonatal necrotizing enterocolitis. J Pediatr 1983; 103 (03) 454-459
  • 30 Sharma RPB, Mollitt D. et al. Necrotizing enterocolitis (NEC) associated with and without rotavirus infection (RVI): a comparative evaluation. Pediatr Res 1996; 39: 302
  • 31 Sharma R, Garrison RD, Tepas III JJ. et al. Rotavirus-associated necrotizing enterocolitis: an insight into a potentially preventable disease?. J Pediatr Surg 2004; 39 (03) 453-457
  • 32 Keller KM, Schmidt H, Schumacher R. Rotavirus positive (RV+) and non-rotavirus (RV-) necrotizing enterocolitis (NEC) in 32 infants. Pediatr Radiol 1991; 21 (08) 606-607
  • 33 Chany C, Moscovici O, Lebon P, Rousset S. Association of coronavirus infection with neonatal necrotizing enterocolitis. Pediatrics 1982; 69 (02) 209-214
  • 34 Resta S, Luby JP, Rosenfeld CR, Siegel JD. Isolation and propagation of a human enteric coronavirus. Science 1985; 229 (4717) 978-981
  • 35 Birenbaum E, Handsher R, Kuint J. et al. Echovirus type 22 outbreak associated with gastro-intestinal disease in a neonatal intensive care unit. Am J Perinatol 1997; 14 (08) 469-473
  • 36 Gessler P, Bischoff GA, Wiegand D, Essers B, Bossart W. Cytomegalovirus-associated necrotizing enterocolitis in a preterm twin after breastfeeding. J Perinatol 2004; 24 (02) 124-126
  • 37 Bar-Meir M, Farrow KN, Melin-Aldana H, Chadwick EG. Cytomegalovirus enterocolitis mimicking necrotizing enterocolitis: case reports and review of the literature. J Pediatric Infect Dis Soc 2013; 2 (01) 71-75
  • 38 Tran L, Ferris M, Norori J. et al. Necrotizing enterocolitis and cytomegalovirus infection in a premature infant. Pediatrics 2013; 131 (01) e318-e322
  • 39 Patel RM, Shenvi N, Knezevic A. et al. Observational study of cytomegalovirus from breast milk and necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 2019; 105 (03) 259-265
  • 40 Cuna A, Morowitz MJ, Ahmed I, Umar S, Sampath V. Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol 2021; 320 (04) G411-G419
  • 41 Cheng C, He Y, Xiao S, Ai Q, Yu J. The association between enteric viruses and necrotizing enterocolitis. Eur J Pediatr 2021; 180 (01) 225-232
  • 42 Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol 2021; 19 (08) 514-527
  • 43 Young GR, Nelson A, Stewart CJ, Smith DL. Bacteriophage communities are a reservoir of unexplored microbial diversity in neonatal health and disease. Curr Opin Microbiol 2023; 75: 102379
  • 44 Zhang Y, Wang R. The human gut phageome: composition, development, and alterations in disease. Front Microbiol 2023; 14: 1213625
  • 45 Zeng S, Almeida A, Li S. et al. A metagenomic catalog of the early-life human gut virome. Nat Commun 2024; 15 (01) 1864
  • 46 Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017; 11 (07) 1511-1520
  • 47 Emencheta SC, Olovo CV, Eze OC. et al. The role of bacteriophages in the gut microbiota: implications for human health. Pharmaceutics 2023; 15 (10) 2416
  • 48 Wilson A, Bogie B, Chaaban H, Burge K. The nonbacterial microbiome: fungal and viral contributions to the preterm infant gut in health and disease. Microorganisms 2023; 11 (04) 909
  • 49 Stone E, Campbell K, Grant I, McAuliffe O. Understanding and exploiting phage-host interactions. Viruses 2019; 11 (06) 567
  • 50 Zhou S, Liu Z, Song J, Chen Y. Disarm the bacteria: what temperate phages can do. Curr Issues Mol Biol 2023; 45 (02) 1149-1167
  • 51 Brown TL, Charity OJ, Adriaenssens EM. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Curr Opin Microbiol 2022; 70: 102229
  • 52 Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link' between gut bacteria and host immunity?. Therap Adv Gastroenterol 2019; 12: 1756284819836620
  • 53 Hsu BB, Gibson TE, Yeliseyev V. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 2019; 25 (06) 803-814.e5
  • 54 Berrington JE, Stewart CJ, Embleton ND, Cummings SP. Gut microbiota in preterm infants: assessment and relevance to health and disease. Arch Dis Child Fetal Neonatal Ed 2013; 98 (04) F286-F290
  • 55 La Rosa PS, Warner BB, Zhou Y. et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci U S A 2014; 111 (34) 12522-12527
  • 56 Siranosian BA, Tamburini FB, Sherlock G, Bhatt AS. Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages. Nat Commun 2020; 11 (01) 280
  • 57 Liang G, Zhao C, Zhang H. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 2020; 581 (7809) 470-474
  • 58 Dinleyici M, Pérez-Brocal V, Arslanoglu S. et al. Human milk virome analysis: changing pattern regarding mode of delivery, birth weight, and lactational stage. Nutrients 2021; 13 (06) 1779
  • 59 Duranti S, Lugli GA, Mancabelli L. et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 2017; 5 (01) 66
  • 60 Yew WC, Young GR, Nelson A. et al. The core phageome and its interrelationship with preterm human milk lipids. Cell Rep 2023; 42 (11) 113373
  • 61 Pannaraj PS, Ly M, Cerini C. et al. Shared and distinct features of human milk and infant stool viromes. Front Microbiol 2018; 9: 1162
  • 62 Lou YC, Chen L, Borges AL. et al. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32 (01) 35-47.e6
  • 63 Barr JJ, Auro R, Furlan M. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 2013; 110 (26) 10771-10776
  • 64 Van Belleghem JD, Dąbrowska K, Vaneechoutte M, Barr JJ, Bollyky PL. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 2018; 11 (01) 10
  • 65 Champagne-Jorgensen K, Luong T, Darby T, Roach DR. Immunogenicity of bacteriophages. Trends Microbiol 2023; 31 (10) 1058-1071
  • 66 Gribar SC, Sodhi CP, Richardson WM. et al. Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J Immunol 2009; 182 (01) 636-646
  • 67 Kasman LM, Porter LD. Bacteriophages. In: StatPearls [Internet]. StatPearls Publishing: Treasure Island, FL: 2025
  • 68 Chandra H, Sharma KK, Tuovinen OH, Sun X, Shukla P. Pathobionts: mechanisms of survival, expansion, and interaction with host with a focus on Clostridioides difficile. Gut Microbes 2021; 13 (01) 1979882
  • 69 Shamash M, Maurice CF. Phages in the infant gut: a framework for virome development during early life. ISME J 2022; 16 (02) 323-330
  • 70 Kaelin EA, Rodriguez C, Hall-Moore C. et al. Longitudinal gut virome analysis identifies specific viral signatures that precede necrotizing enterocolitis onset in preterm infants. Nat Microbiol 2022; 7 (05) 653-662
  • 71 Olm MR, Bhattacharya N, Crits-Christoph A. et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci Adv 2019; 5 (12) eaax5727
  • 72 Ginzel M, Yu Y, Klemann C. et al. The viral dsRNA analogue poly (I:C) induces necrotizing enterocolitis in neonatal mice. Pediatr Res 2016; 79 (04) 596-602
  • 73 Sulakvelidze A, Alavidze Z, Morris Jr JG. Bacteriophage therapy. Antimicrob Agents Chemother 2001; 45 (03) 649-659
  • 74 Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ. Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals (Basel) 2021; 14 (10) 1019
  • 75 Jakobsen RR, Trinh JT, Bomholtz L, Brok-Lauridsen SK, Sulakvelidze A, Nielsen DS. A bacteriophage cocktail significantly reduces Listeria monocytogenes without deleterious impact on the commensal gut microbiota under simulated gastrointestinal conditions. Viruses 2022; 14 (02) 190
  • 76 Liu Q, Xu Z, Dai M, Su Q, Leung Chan FK, Ng SC. Faecal microbiota transplantations and the role of bacteriophages. Clin Microbiol Infect 2023; 29 (06) 689-694
  • 77 Brunse A, Martin L, Rasmussen TS. et al. Effect of fecal microbiota transplantation route of administration on gut colonization and host response in preterm pigs. ISME J 2019; 13 (03) 720-733
  • 78 Prado C, Michels M, Ávila P, Burger H, Milioli MVM, Dal-Pizzol F. The protective effects of fecal microbiota transplantation in an experimental model of necrotizing enterocolitis. J Pediatr Surg 2019; 54 (08) 1578-1583
  • 79 He Y, Du W, Xiao S. et al. Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells. J Transl Med 2021; 19 (01) 510
  • 80 Santiago-Rodriguez TM, Hollister EB. Unraveling the viral dark matter through viral metagenomics. Front Immunol 2022; 13: 1005107
  • 81 Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive expansion of human gut bacteriophage diversity. Cell 2021; 184 (04) 1098-1109.e9
  • 82 Cook R, Brown N, Redgwell T. et al. Infrastructure for a phage reference database: identification of large-scale biases in the current collection of cultured phage genomes. Phage (New Rochelle) 2021; 2 (04) 214-223
  • 83 Shah SA, Deng L, Thorsen J. et al. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023; 8 (05) 986-998
  • 84 Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome 2015; 3: 31
  • 85 Henderickx JGE, de Weerd H, Groot Jebbink LJ. et al. The first fungi: mode of delivery determines early life fungal colonization in the intestine of preterm infants. Microbiome Res Rep 2022; 1 (01) 7
  • 86 Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the human mycobiome over the first month of life and across body sites. mSystems 2018; 3 (03) e00140-17
  • 87 Ferrando G, Castagnola E. Prophylaxis of invasive fungal infection in neonates: a narrative review for practical purposes. J Fungi (Basel) 2023; 9 (02) 164
  • 88 Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 2021; 591 (7851) 633-638
  • 89 Samara J, Moossavi S, Alshaikh B. et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe 2022; 30 (05) 696-711.e5
  • 90 Falgier C, Kegley S, Podgorski H. et al. Candida species differ in their interactions with immature human gastrointestinal epithelial cells. Pediatr Res 2011; 69 (5 Pt 1): 384-389
  • 91 Benjamin Jr DK, Stoll BJ, Fanaroff AA. et al; National Institute of Child Health and Human Development Neonatal Research Network. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 2006; 117 (01) 84-92
  • 92 Fu J, Wang X, Wei B, Jiang Y, Chen J. Risk factors and clinical analysis of candidemia in very-low-birth-weight neonates. Am J Infect Control 2016; 44 (11) 1321-1325
  • 93 Parra-Herran CE, Pelaez L, Sola JE, Urbiztondo AK, Rodriguez MM. Intestinal candidiasis: an uncommon cause of necrotizing enterocolitis (NEC) in neonates. Fetal Pediatr Pathol 2010; 29 (03) 172-180
  • 94 Molinaro F. Necrotizing enterocolitis and systemic candida infection in newborn with birth weight under 750 g. Curr Pediatr Res 2018; 22 (01) 115-118
  • 95 Ballance WA, Dahms BB, Shenker N, Kliegman RM. Pathology of neonatal necrotizing enterocolitis: a ten-year experience. J Pediatr 1990; 117 (1 Pt 2): S6-S13
  • 96 Mollitt DL, Tepas III JJ, Talbert JL. The microbiology of neonatal peritonitis. Arch Surg 1988; 123 (02) 176-179
  • 97 Smith SD, Tagge EP, Miller J, Cheu H, Sukarochana K, Rowe MI. The hidden mortality in surgically treated necrotizing enterocolitis: fungal sepsis. J Pediatr Surg 1990; 25 (10) 1030-1033
  • 98 Ting JY, Roberts A, Synnes A. et al; Canadian Neonatal Network Investigators. Invasive fungal infections in neonates in Canada: epidemiology and outcomes. Pediatr Infect Dis J 2018; 37 (11) 1154-1159
  • 99 Garg PM, Paschal JL, Ansari MAY, Block D, Inagaki K, Weitkamp JH. Clinical impact of NEC-associated sepsis on outcomes in preterm infants. Pediatr Res 2022; 92 (06) 1705-1715
  • 100 Aliaga S, Clark RH, Laughon M. et al. Changes in the incidence of candidiasis in neonatal intensive care units. Pediatrics 2014; 133 (02) 236-242
  • 101 Robati Anaraki M, Nouri-Vaskeh M, Abdoli Oskoei S. Fluconazole prophylaxis against invasive candidiasis in very low and extremely low birth weight preterm neonates: a systematic review and meta-analysis. Clin Exp Pediatr 2021; 64 (04) 172-179
  • 102 Stewart CJ, Nelson A, Scribbins D. et al. Bacterial and fungal viability in the preterm gut: NEC and sepsis. Arch Dis Child Fetal Neonatal Ed 2013; 98 (04) F298-F303
  • 103 Kaufman DA, Morris A, Gurka MJ, Kapik B, Hetherington S. Fluconazole prophylaxis in preterm infants: a multicenter case-controlled analysis of efficacy and safety. Early Hum Dev 2014; 90 (Suppl. 01) S87-S90
  • 104 Ericson JE, Kaufman DA, Kicklighter SD. et al; Fluconazole Prophylaxis Study Team on behalf of the Best Pharmaceuticals for Children Act–Pediatric Trials Network Steering Committeea, Fluconazole Prophylaxis Study Team on behalf of the Best Pharmaceuticals for Children Act–Pediatric Trials Network Steering Committee. Fluconazole prophylaxis for the prevention of candidiasis in premature infants: a meta-analysis using patient-level data. Clin Infect Dis 2016; 63 (05) 604-610
  • 105 Zhang D, Xie D, He N, Wang X, Dong W, Lei X. Prophylactic use of fluconazole in very premature infants. Front Pediatr 2021; 9: 726769