Synthesis 2025; 57(09): 1627-1634
DOI: 10.1055/a-2519-9876
paper

Noncovalent Inhibitors of SARS-CoV-2 Main Protease: A Rescaffolding Attempt

Tim Krischuns
a   RNA Biology and Influenza Virus Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
,
Sylvain Paisant
a   RNA Biology and Influenza Virus Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
,
Kuang-Yu Chen
a   RNA Biology and Influenza Virus Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
,
Laura N. Thirion
b   Structure et Instabilité des Génomes (StrInG), Muséum National d′Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
,
Agnès Zettor
c   Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Paris, France
,
Jeanne Chiaravalli
c   Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Paris, France
,
Yves Jacob
d   Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
,
Marco Bellinzoni
e   Structural Microbiology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 25-28 rue du Dr. Roux, 75015 Paris, France
,
Nadia Naffakh
a   RNA Biology and Influenza Virus Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
,
b   Structure et Instabilité des Génomes (StrInG), Muséum National d′Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
› Author Affiliations

This work was supported by the «URGENCE COVID-19» fundraising campaign of the Institut Pasteur. K.Y.C. and T.K. were funded by the Agence Nationale de la Recherche (grants ANR-18-CE18-0026 and ANR-18-CE18-0028).


Abstract

Out of the results of the sole large-scale screening for inhibitors of SARS-CoV-1 main protease reported in 2013, attempts to improve the identified 3-pyridyl-bearing hits have been conducted in research laboratories, either on this enzyme or more recently on the closely related SARS-CoV-2 main protease. From the resulting structural information reported, we sought to design analogues featuring some of the components providing an affinity for the active site of these proteases along with a different scaffold, which would allow for further structure-activity relationship studies and/or pharmacological improvements. We describe here the introduction of a bridging component with the aim of stabilizing the ligand conformation adopted when bound to these proteases. Accordingly, this led us to prepare 3,3-disubstituted piperazin-2-ones from an array of ketones, via either a Bargellini reaction or a multistage condensation/cyclization/hydrolysis involving ethylene diamine and potassium cyanide. However, even the most elaborate and lipophilic biphenyl-bearing analogues displayed only a weak effect in a bioluminescence-based SARS-CoV-2 main protease inhibition assay.

Supporting Information



Publication History

Received: 23 September 2024

Accepted after revision: 19 January 2025

Accepted Manuscript online:
19 January 2025

Article published online:
03 March 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Bibliography

  • 1 Janin YL. RSC Med. Chem. 2024; 15: 81
    • 2a Turlington M, Chun A, Tomar S, Eggler A, Grum-Tokars V, Jacobs J, Daniels JS, Dawson E, Saldanha A, Chase P, Baez-Santos YM, Lindsley CW, Hodder P, Mesecar AD, Stauffer SR. Bioorg. Med. Chem. Lett. 2013; 23: 6172
    • 2b Jacobs J, Grum-Tokars V, Zhou Y, Turlington M, Saldanha SA, Chase P, Eggler A, Dawson ES, Baez-Santos YM, Tomar S, Mielech AM, Baker SC, Lindsley CW, Hodder P, Mesecar A, Stauffer SR. J. Med. Chem. 2013; 56: 534
  • 3 St John SE, Anson BJ, Mesecar AD. Sci. Rep. 2016; 6: 25961
  • 4 Lockbaum GJ, Reyes AC, Lee JM, Tilvawala R, Nalivaika EA, Ali A, Kurt Yilmaz N, Thompson PR, Schiffer CA. Viruses 2021; 13: 174
  • 5 Douangamath A, Fearon D, Gehrtz P, Krojer T, Lukacik P, Owen CD, Resnick E, Strain-Damerell C, Aimon A, Ábrányi-Balogh P, Brandão-Neto J, Carbery A, Davison G, Dias A, Downes TD, Dunnett L, Fairhead M, Firth JD, Jones SP, Keeley A, Keserü GM, Klein HF, Martin MP, Noble ME. M, O’Brien P, Powell A, Reddi RN, Skyner R, Snee M, Waring MJ, Wild C, London N, von Delft F, Walsh MA. Nat. Commun. 2020; 11: 5047
    • 6a vo Delft F, Calmiano M, Chodera J, Griffen E, Lee A, London N, Matviuk T, Perry B, Robinson M, von Delft A. Nature 2021; 594: 330
    • 6b Zaidman D, Gehrtz P, Filep M, Fearon D, Gabizon R, Douangamath A, Prilusky J, Duberstein S, Cohen G, Owen CD, Resnick E, Strain-Damerell C, Lukacik P, Covid Moonshot Consortium Barr H, Walsh MA, von Delft F, London N. Cell Chem. Biol. 2021; 28: 1795
    • 6c Kitamura N, Sacco MD, Ma C, Hu Y, Townsend JA, Meng X, Zhang F, Zhang X, Ba M, Szeto T, Kukuljac A, Marty MT, Schultz D, Cherry S, Xiang Y, Chen Y, Wang J. J. Med. Chem. 2022; 65: 2848
    • 6d Ma C, Xia Z, Sacco MD, Hu Y, Townsend JA, Meng X, Choza J, Tan H, Jang J, Gongora MV, Zhang X, Zhang F, Xiang Y, Marty MT, Chen Y, Wang J. J. Am. Chem. Soc. 2021; 143: 20697
    • 6e Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO, Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D, Krambrich J, Tas A, Lundgren B, Gravenfors Y, Craig AJ, Atilaw Y, Sandström A, Moodie LW. K, Lundkvist Å, van Hemert MJ, Neyts J, Lennerstrand J, Kihlberg J, Sandberg K, Danielson UH, Carlsson J. J. Am. Chem. Soc. 2022; 144: 2905
    • 6f Fink EA, Bardine C, Gahbauer S, Singh I, Detomasi T, White K, Gu S, Wan X, Chen J, Ary B, Glenn I, O’Connell J, O’Donnell H, Fajtová P, Lyu J, Vigneron S, Young NJ, Kondratov IS, Alisoltani A, Simons LM, Lorenzo-Redondo R, Ozer EA, Hultquist JF, O’Donoghue AJ, Moroz Y, Taunton J, Renslo AR, Irwin JJ, García-Sastre A, Shoichet BK, Craik CS. Protein Sci. 2023; 32: e4712
    • 6g See also ref. 7.
  • 7 Boby ML, Fearon D, Ferla M, Filep M, Koekemoer L, Robinson MC, Covid Moonshot Consortium Chodera JD, Lee AA, London N, von Delft A, von Delft F. Science 2023; 382, eabo7201
  • 8 Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD, Lindsey AA, Lakatos G, Martinez SR, Alvarado J, Akers WS, Wang NS, Jung JU, Macdonald JD, Stauffer SR. J. Med. Chem. 2022; 65: 2880
  • 10 Peschke B, Ankersen M, Hansen TK, Hansen BS, Lau J, Nielsen KK, Raun K. Eur. J. Med. Chem. 2000; 35: 599
  • 11 Desai LV, Ren DT, Rosner T. Org. Lett. 2010; 12: 1032
  • 12 Strong JS, Graig WE, Elkind VT. US 2700668, 1955
  • 14 Chen KY, Krischuns T, Ortega Varga L, Hariga-Souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O’Brien A, Baker SC, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. Antiviral Res. 2022; 201: 105272
  • 15 Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, Groutas WC, Chang KO. J. Virol. 2012; 86: 11754
  • 16 Jaeschke G, O’Hara F, Plancher JM, Ricci A, Rueher D, Vieira E. WO 2017021384, 2017: 40
  • 17 Janin YL. Beilstein J. Org. Chem. 2022; 18: 1355
  • 18 Takemiya A, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 14800
  • 19 Peña-López M, Piehl P, Elangovan S, Neumann H, Beller M. Angew. Chem. Int. Ed. 2016; 55: 14967